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Abstract 

This paper presents a three-dimensional boundary element model (BEM), 
formulated in the frequency domain, to simulate the heat diffusion by conduction 
that occurs in the vicinity of a three-dimensional crack. The crack is assumed to 
have null thickness and does not allow diffusion of energy, so the heat fluxes are 
null along its boundary. The crack is assumed to be embedded in an unbounded 
medium. The boundary element formulation is written in terms of normal-
derivative integral equations (known as TBEM) in order to handle null thickness 
cracks. The resulting hypersingular integrals are solved analytically.  
     After verifying the TBEM results by means of known analytical solutions for 
cylindrical inclusions, the applicability of the proposed methodology is shown by 
simulating the heat diffusion generated by a point heat source placed in the 
vicinity of a crack. The size of the crack, its orientation and the position of the 
source are some of the variables that are analyzed to define features that may be 
used in non-destructive testing by infrared thermography. 
Keywords: transient heat conduction, 3D sources, infrared thermography. 

1 Introduction 

Heat and moisture diffusion is sensitive to the presence of defects, hence thermal 
pattern images of building elements collected via Infrared Thermography (IRT) 
have proven to be useful in detecting heat losses, missing or damaged insulation, 
thermal bridges, air leakages and excess moisture [1,  2] and for testing the 
integrity of composites  [3,  4]. IRT is mostly used as a qualitative non-
destructive testing technique, however solving inverse heat conduction problems 
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in transient regime studied via numerical simulation of heat diffusion will lead to 
a better understanding of thermo graphic data results and ultimately result in 
better identification and characterization of defects in building elements  [5]. 
     Numerical modeling of heat transfer and diffusion in the presence of defects 
along with sophisticated techniques such as IRT systems may be employed as a 
non-destructive technique for detecting the presence and evaluating the extension 
of existing defects. The three dimensional nature of such defects combined with 
the need to simulate heat transfer and diffusion phenomena in transient regime 
presents a challenge for researchers. The present paper presents a model 
motivated by an interest in assessing the potential of IRT use in the presence of 
defects with specific geometries and depths.  
     Within the available numerical methods for homogeneous unbounded or 
semi-infinite systems modelling, the Boundary Element Method (BEM)  [6] is 
considered to be one of the most adequate tools for this kind of problem since it 
automatically satisfies far field conditions and only requires the discretization of 
the inclusions boundaries. However, one major drawback of the BEM is that it 
can only be applied to more general geometries and media when the relevant 
fundamental solution is known, which may not always be possible. In addition, it 
is well known that when using BEM the boundary integrals may become 
singular or nearly singular depending on the distance between the source point 
and the node being integrated. Also, it is known that when the thickness of the 
heterogeneity being modelled tends towards zero, such as in the case of 
delaminations, cracks or thin defects, the conventional direct BEM degenerates 
and becomes inaccurate and is no longer a valid basis for numerical modelling. 
Various techniques have been proposed to overcome this such as the use of Dual 
Boundary Element Method (DBEM) which leads to hypersingular integrals.  
     Different approaches have been proposed to deal with hypersingular integrals 
that arise in DBEM  [7]. Solutions for specific 2D problems may be found in 
Cruse  [8], Sládek and Sládek  [9], Mendes and Tadeu  [10]. For 3D problems, 
singular integrals are mostly solved using numerical schemes based on Gaussian 
integration schemes. However, as the accuracy of the BEM is highly dependent 
on the precision of those integrals, some researchers are looking for sophisticated 
approaches to solve specific problems  [1].  
     In the sections that follow, a frequency domain boundary element formulation 
is proposed (the normal-derivative integral equations - TBEM) to simulate the 
heat diffusion in the vicinity of a 3D crack. Analytical solutions are used to solve 
the hypersingular integrals when the element being integrated is the loaded one. 
The numerical model is then verified by comparing its results with known 
closed-form solutions. Finally, the methodology to obtain time-domain responses 
from frequency-domain calculations is described, followed by a set of numerical 
applications to illustrate the applicability and usefulness of the proposed 
approach in the analysis of several test cases, simulating the heat diffusion 
generated by a point heat source placed in the vicinity of a crack. These 
applications mainly focus on the effect of the position, size and orientation of the 
crack, defining features that may be used in IRT.   
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2 Problem definition 

This work simulates the three-dimensional heat diffusion in the vicinity of a 3D 
crack, generated by a point heat source, as illustrated in Figure 1. The medium is 
an unbounded spatially uniform solid medium of density ,  thermal 

conductivity    and specific heat .c The crack, with surface ,S  is assumed to be 
thin. 

 

Figure 1: Three-dimensional geometry of the problem. 

     This system is subjected to a point heat source placed at  ,s s sx y z ,  

       iˆ ( , , , ) e t
s s sf x y z t x x y y z z       ,  (1) 

where  sx x  ,  sy y   and  sz z   are Dirac-delta functions, and   is  

the frequency of the source. The response of this heat source can be expressed by 
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in which K  is the thermal diffusivity defined by 
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3 The normal-derivative integral equation (TBEM) 

The transient heat transfer by conduction is governed by the diffusion equation: 
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     The classical boundary integral equation, formulated in the frequency 
domain, is: 

 0 1 0 inc 0( , ) ( , , , ) ( , )d ( , , )n s

S

bT H T s T     nx x x x x x  (4) 

where H  are the fundamental solutions (Green’s functions) for the heat flux (q), 
at a point ( , , )x y zx  on the boundary S , due to a virtual point heat source at 
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 0 0 0 0, ,x y zx ; 1nn  represents the unit outward normal along the boundary ,S at 

( , , )x y zx ; b  is a constant defined by the shape of the boundary, taking the 

value 1 2  if  0 0 0 0, ,x y z S x , and 1 otherwise. 

     The required Green’s functions for heat flux in an unbounded medium, in 
Cartesian coordinates, are given by: 

    -i

1 0 2
1

e i 1
, , ,

4

ck r
c

n
n

k r r
H

r



  




n
n

x x , (5) 

with      2 2 2

0 0 0r x x y y z z     
 

 
     The normal-derivative integral equation can be derived by applying the 
gradient operator to the boundary integral Eqn (4), which can be seen as 
assuming the existence of dipole heat sources. When the boundary of the 
inclusion is loaded with dipoles (dynamic doublets) the required integral 
equations can be expressed as: 

 0 1 2 0 0 2( , ) ( , , , , ) ( , )ds ( , , , )incn n n s

S

aT H T T     n n nx x x x x x , (6) 

     The Green’s functions H  are defined by applying the gradient operator to 
,H which can be seen as the derivatives of these former Green’s functions, to 

obtain heat fluxes. In these equations, 2nn   is the unit outward normal to the 

boundary S  at the collocation points  0 0 0 0, ,x y zx , defined by the vector 

2 .nn  In this equation, the factor a  is null for piecewise planar boundary 

elements. 
     The required three-dimensional Green’s functions for an unbounded space are 
now defined as:  
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     In Eqn (6) the incident heat field is computed as 
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     The global solution is found by solving Eqn (6), which requires the 
discretization of the interface S  into N  planar boundary elements, with one 
nodal point in the middle of each element.  
     The integrations in Eqn (6) are evaluated using a Gaussian quadrature scheme 
when the element to be integrated is not the loaded element. For the loaded 
element (the hypersingular element), however, the integrands exhibit a 
singularity and the integration can be carried out in closed form, as will be 
defined next. 
     Consider a singular rectangular element of width W (in the x  direction) and 
length L (in the z direction) and with the axis origin at the centre of the element. 

     The integration of the Green’s function 
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Green’s functions with varying spatial wavenumbers. This is accomplished by 
first applying a spatial Fourier transformation along the z  direction to the three 
dimensional Green’s function 1 0( , , , )nH nx x . The application of a Fourier-

transformation to Eqn (5) in that direction leads to a line heat field, whose 
amplitude varies sinusoidally in the third dimension  z ,  
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in which  nH   are second kind Hankel functions of the order n , 
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     Assuming the presence of an infinite set of equally-spaced sources in the z  
direction, the former Green’s function can be recast as:   
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where vsL  is the spatial source interval, and 2
zm
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k m
L


 .  

     This equation converges and can be approximated by a finite sum of terms 
(M). The distance vsL  needs to be large enough to avoid spatial contamination. 

The use of complex frequencies further reduces the influence of the 
neighbouring fictitious sources. The 3D Green’s field can therefore be computed 
as the pressure irradiated by a sum of harmonic (steady-state) line loads, whose 
amplitude varies sinusoidally in the z  dimension. 

     The Green’s functions H  can then be defined by applying the gradient 
operator to ,H  which leads to 
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     The integration  of 2 0( )I kr  is performed indirectly by isolating a semi-

cylinder just above the boundary element and by considering its thermal 
equilibrium, which leads to 
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4 Algorithm’s verification  

This section illustrates the verification of the proposed algorithm using a circular 
cylindrical cavity, aligned along the z  axis, for which analytical solutions can be 
derived. This cavity, with radius a , is excited by a point heat source placed at 

 , ,s s sx y z . Null heat fluxes are prescribed along the boundary.  To enable 

comparison with the 3D TBEM model, the length of the cavity is limited by 
enforcing null heat fluxes at sections 0.0 mz   and tz L .   

     The analytical solution for this problem is obtained by first applying a spatial 
Fourier transformation in the z  direction, which allows the solution to be 
obtained as the sum of two-dimensional solutions with a varying spatial 
wavenumber in that direction.  The null normal heat flux at sections 0.0 mz   

and tz L  are accomplished by adding the heat field generated by the real 

source to that produced by virtual sources (image sources), which are located in 
the z  direction in such a way that they act as mirrors of the real source and that 
they guarantee the required boundary conditions.   
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3 0 2m tz z z L m    and 3 0 2m tz z z L m   .  
 

     The number of virtual sources zNS  to be used in the calculations is defined 

so that the signal responses can be correctly computed in the time frame, which 
is determined by the frequency increment 1 f . This procedure does not 

introduce any type of error into the computed time impulse response within the 
time window defined. Notice that vsL  should be at least twice the distance from 

the real source to the more distant virtual source. Each two-dimensional problem 
is solved using the separation of variables procedure with the Helmholtz 
equation and enforcing the boundary conditions throughout the boundary 
surface, using the Bessel series form. The following equations can be derived if 
the origin of the coordinate system coincides with the centre of the circle, cross 
section of the cylinder, and the source lies on the x

 
axis. 
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if n   , 00 0r x  and  arctan x y  . 

     The temperature responses are computed at  0.8 m, 0.0 m, 1.0 m , in the 

vicinity of a cylinder inclusion with a radius of 0.5 ma   and 2.0 mtL  . The 

3D heat source is placed at  1.5 m, 0.0 m, 1.0 m .  Computations are 

performed with a frequency increment of 70.5 10 Hz  in the frequency range 
50.0,1 10 Hz   . The thermal properties assigned to the medium are: 

-1 -1780 J.kg .ºCc  , -3=1860 kg.m and -1 -10.72 W.m .ºC  . vsL  is assumed to 

be 60.0 m .  The responses were computed for complex frequencies ic     

(with 0.7   , 2 f       and 70.5 10 Hzf    ). 

     The responses were calculated both analytically and by using the TBEM. To 
understand the behaviour of the various solutions two different numbers of 
boundary elements were used to discretise the inclusion: 30 20 (20 in the z

 
direction) and 50 32  (32 in the z

 
direction). 

     Figure 2 shows the analytical response (real and imaginary parts) at the 
receiver and illustrates the value of the error when the problem is solved using 
the proposed TBEM algorithm. It can be observed that the solution improves as 
the number of boundary elements increases.  
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Analytical Response Error using TBEM 

 

Figure 2: Comparative analysis of analytical and TBEM responses, 
considering different numbers of boundary elements. 

5 Temperature in time  

A numerical inverse fast Fourier transform is applied in the frequency domain to 
find the heat field in the time domain.  Aliasing phenomena are dealt by 
introducing complex frequencies with a small imaginary part, taking the form  

ic     (where 0.7   , and   is the frequency step). This shift is 

subsequently taken into account in the time domain by means of an exponential 
window, e t , applied to the response. 
     The source can have any time variation.  We can determine the frequency 
domain solution by applying a time Fourier transformation, and it can range from 
0.0  Hz  to quite high frequencies.  Since the heat response falls rapidly with 

increasing frequency, we do not need to compute the highest frequencies in the 
range.   

6 Simulation results 

The applicability and usefulness of the proposed approach are illustrated by 
simulating the heat  propagation around a 3D thin crack hosted in an unbounded 
solid medium. The cracks, modelled next, are assumed to be plan, rectangular 
and placed parallel to the z  axis. Its size, orientation and position vary (see 
Figure 3). The orientation of the crack is changed by tilting the crack. Two crack 
sizes are simulated:  0.1 m, 0.2 ma b   and  0.05 m, 0.1ma b  . 

     The thermal properties of the host medium are those of the concrete, 
mentioned above. All the calculations are performed in the frequency range 

-20.0,1.42 10 Hz    with a frequency increment of -52.778 10 Hz    and the 

imaginary part of the frequency is given by 0.7   . 

     The computations are performed for the following cases: Case I) grid of 
receivers are placed at 0.08 mx  , 0.22 mx   and 0.0 mz  , 3D source point 

is placed at  0.0 m, 0.0 m, 0.0 m and vertical crack is 20.1 0.2 m ; Case II) 
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Figure 3: Geometry of the system used to simulate infrared thermography. 

same as before but crack is tilted at 45 ; Case III) receivers are placed at 
0.12 mx  , 0.22 mx   and 0.0 mz  , source point is at 

 0.04 m, 0.0 m, 0.0 m  and 20.1 0.2 m  vertical crack; Case IV) same as Case 

III but crack is reduced to 20.05 0.1m . On each grid, receivers were spaced at 

equal intervals of 0.005 m , 0.00625 m  and 0.006 m  in the x , y , and z  axis 

direction, respectively. 
     The host medium is assumed to be at 20.0 ºC  when the source starts emitting 

energy. The source time dependence is assumed to be rectangular with a power 
of 12 Watts. It starts emitting energy at instant 0.5 ht   and continues for 1.5 h . 

The grid of receivers placed at 0.08 mx  or 0.12 mx   simulates an object’s 

surface on which thermo graphic data given by IRT is recorded. 
     By comparing Cases I and II the influence of the crack’s inclination on the 
temperatures results recorded on the grid of receivers is studied. Case III 
evaluates the alterations produced when the crack is moved closer to the object’s 
surface and finally Case IV studies the effect of reducing the size of the crack. 
     In order to study the effect of the crack on the temperature pattern, 
computations were made for when the crack is embedded in the medium and for 
when the medium is empty of cracks. The difference between both results 
translates the differences in temperatures that may be used by IRT to assess the 
presence of cracks. This procedure is exemplified in Figure 4, which illustrates  
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Figure 4: Snapshots of temperature distribution (in ºC) for Case III. 

the time domain snapshots of the temperature distribution  at 2.15 ht   for 

Case III. On the left, the results display the case for when the crack is within the 
medium, while the central plot shows the results obtained when the medium is 
empty of cracks. The difference between both results is given in the plot on the 
right. 
     Figure 5 contains snapshots of the temperature differences at different time 
instants ( 1.5 ht  , 2.15 ht   and 4.5 ht  ) for each of the cases described 

previously. The scale of colours shown in the plot on the right in Figure 4 also 
applies to Figure 5. As shown in Figure 5, given the distance from the crack to 
the grid of receivers on 0.08 mx  , the temperature field is very mild for both 

cases (I and II). This field is progressively weaker as the crack is tilted. 
Ultimately, when the crack is tilted horizontally the temperature difference is 
null, due to fact that the crack is aligned with the point heat source  0z   In 

this particular case, the heat front is perpendicular to the crack, so null fluxes 
exist for any azimuthal directions. Thus, the crack does not introduce any 
disturbance on the heat diffusion phenomenon. Additionally, the results show 
that at 1.5 ht   the temperature is still increasing, while at 4.5 ht  the source 

has already been turned off and the temperature is decreasing. The temperature 
field recorded on the perpendicular grid  0.0 mz   witnesses this behaviour. 

     Results for case III show that by bringing the crack closer to the surface, the 
temperature field becomes more significant, when compared to cases I and II. 
The results obtained by reducing the size of the crack illustrates that the effect 
that the inclusion has on the surface temperature differences diminishes. In fact, 
temperature differences of this scale are not picked up by most IRT systems. 
This indicates that further studies need to be performed by using a more 
powerful heat source or by changing the excitation frequency and performing 
more than one heating cycle.  
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Figure 5: Snapshots of temperature differences. 

7 Conclusions 

In this paper the authors proposed a three-dimensional normal-derivative integral 
equation (TBEM) formulation to allow modelling heat conduction in the vicinity 
of cracks embedded in an unbounded medium. The integration of hypersingular 
integrals that appear when the element to be integrated is the loaded one 
(singular element) are integrated analytically.  
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     The proposed algorithm was first verified against a reference solution defined 
for a circular cylindrical cavity and very good accuracy was demonstrated.  
Finally, the proposed coupling formulations were applied to a set of numerical 
examples where a crack is placed in an unbounded space. The size of the crack, 
its orientation and the position of the source were some of the variables that are 
analyzed to define features that may be used in IRT.   
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