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Abstract 

A software application has been developed for the numerical solution of inverse 
problems in heat conduction. The developed software allows the estimation of 
specific heat and thermal conductivity both individually and simultaneously –
temperature dependent – and allows application of a variety of boundary 
conditions. The first step is to accurately estimate the starting point, then 
estimate the thermophysical properties, presenting the solution by a linear 
function of straight stretches. The input data is the temperature history at a 
particular location of the solid. The iterative least-squares approach is used to 
minimize the functional and in all cases a piecewise function is used to 
approximate the solution. No prior information is used for the functional forms 
of the unknown specific heat, because this problem is considered a function 
estimation problem. In all the cases a piece-wise function is used to approximate 
the solution. The Network Simulation Method is the numerical method used, 
with a design of the network model made easy, with very few electric devices. 
The software developed is used to run the network so that no mathematical 
manipulations are required. The results confirm that it is possible to estimate the 
thermophysical properties using experimental temperature history and a 
procedure inverse. As regards the convergence of the solutions, no restrictions 
concerning the time interval need to be imposed by the user. 
Keywords: network model, inverse problem, non-linear thermal processing, 
temperature dependent thermal properties. 
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1 Introduction 

The estimation of the thermal properties (thermal conductivity and specific heat) 
from a set of measured temperature data, which is a kind of inverse heat 
conduction problem (IHCP), is considered in this work. In most practical 
applications, the thermal conductivity and the specific heat are two functions of 
temperature and as a result both dependences become non-linear. The 
development of the inverse problem has progressed. Its resolution permits the 
determination of more than one thermo-physical property and then to 
characterize complex materials. 
     There are many types of inverse problems in heat conduction. An extensive 
bibliography which includes references to the exact and approximated methods 
commonly used to solve this kind of problem may be found in Beck et al. [1]. 
Some are cited here: Osman and Beck [2] estimated the heat transfer coefficient 
for the cooling of a sphere using the function estimation technique in conjunction 
with the Sequential Function Specification Method (SFSM). Kim et al. [3] 
estimated the temperature-dependent thermal conductivity without internal 
measurements. Sawaf et al. [4] have determined both temperature dependent heat 
capacity and conductivity using different types of numerical methods. Dantas 
and Orlande [5] made simultaneous estimations of k and C applying the 
conjugate gradient method; including a study of the influence of sensor location. 
Carciofi et al. [6] determined the effective thermal diffusivity of mortadeLla 
from cooking process data. Sacadura and Osman [7] developed a method for to 
estimate the temperature-dependent emissivity in opaque surfaces indirectly, 
now that firstly is obtained the superficial temperature and radiative heat net 
flux. Huang and Özisik [8] obtained precise estimations in a 1-D solid for the 
case of linear and sinusoidal dependencies of both properties using an 
approximate direct integration method.  
     To solve the inverse problem, input data (generally the real temperatures 
measured by a sensor), are necessary. In the literature these data, taken at a point 
of the medium at discrete regular (or irregular) times, come from the solution of 
the direct problem using a random error to simulate real measurements. The 
direct problem was also solved in this work using NSM. 
     The Network Simulation Method (NSM, hereafter), which is the numerical 
technique used to solve both the direct and inverse problem, only requires finite-
difference schemes for the spatial variable (as in the lines method) when 
designing the network model. This method has already been successfully used to 
solve linear and nonlinear problems in direct (Alhama and González-Fernández 
[9] and Zueco et al. [10]) and inverse problems. Also, Alhama et al. [11] applied 
this method to estimating different types of time-dependent incident heat fluxes 
to verify the general methodology proposed for this inverse heat transfer 
problem, while Zueco et al. [12] used it to estimate the temperature-dependent 
thermal properties of solids within the phase-change temperature range. 
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2 Direct and inverse problem 

2.1 Direct problem 

The set of equations that defines the mathematical model is  

 


















x

T
Tk

xt

T
ec )(

              at 0<x<L (1) 

 
0

)( q
t

T
Tk 





              at x=0 (2) 

 

0)( 




t

T
Tk

              at x=L (3) 

 T = To              at t=0, 0<x<L (4) 

where  is the density, ce the specific heat and k the thermal conductivity, x is the 
position, t the time and q0 is the constant heat flux. Eq. (1) is the heat conduction 
equation. The dimensionless form for these equations is not possible due to the 
temperature dependence of k. Eqs. (2, 3) are the constant heat flux and adiabatic 
boundary conditions at x=0 and x=L, respectively. Equation (4) gives the initial 
condition. 

2.2 Inverse problem 

Knowing the solid geometry and physical properties, as the boundary and initial 
conditions, enables one to solve Eqs. (1–4), thus determining the transient 
temperature distribution in different points of the solid material. This type of 
problem is called a direct problem. If any of these magnitudes or a combination 
of them is unknown, but experimental data are available on the temperature 
measured inside and/or on the external surface of the solid, one has an inverse 
problem that allows one to determine the unknown magnitudes, provided those 
data contain sufficient information. 
     For the inverse problem of interest here, the parameter is regarded as 
unknown quantity. For the estimation of such parameter, we consider available 
the transient temperature measurements T(xf, tj, j) = Tex(xf, tj) + j  , where 
Tex(xf,tj) is the temperature solution of the DHCP at the point of the solid xf 
(where tj is a series of p discrete times within the unsteady period, with t the 
time interval between measurements), j is the random number with normal 
distribution and  is the standard deviation of the errors. 
     These temperatures were taken at node right, x = L (adiabatic condition) or 
more points. The superscript j above refers to the time when the measurements 
are taken. Thus, in this work is desired to minimize the difference between 
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experimental and predicted temperatures. Mathematically, it is desired to 
minimize the objective function, 

 F [xf, k, Ta, t, , z]=  [Tinv(xf, tj, k) - T(xf, tj, j)]
2 (5) 

where z = 1, 2, ... Z identifies the stretch (where Z is the total number of 
stretches of the piece-wise function), k the chosen value of the estimated 
parameter, Ta the temperature range in each stretch of the estimation (a constant 
prefixed value). Tinv(xf, tj, k) is the temperature solution of the inverse problem at 
position xf and time tj. The temperatures T(xf,tj,j) were defined in eq. (5). 

2.3 Network simulation method 

The starting point is the set of ordinary finite-differential equations, one for each 
control volume, obtained by spatial discretization of the equation (1). Time 
remains as a continuous variable in the discretized equations. Based on these 
equations, a network model is designed, whose equations are formally equivalent 
to the discretized ones. The variables heat flux (j) and temperature (T) are 
equivalent to the variables electric current (J) and voltage (V) in this equivalence. 
A number of networks are connected in series to make up the whole medium and 
boundary conditions are added by means of special electrical devices. 
     Firstly, we will summarise the steps used in designing the network circuit of 
the direct problem. Using Fourier Law, the spatial discretization of eq. (1) gives  

  ce dTi/dt = 2 ki-x (Ti-x - Ti)/x2 - 2 ki+x (Ti - Ti+x)/x2 (6) 

where kix, are the conductivities in both ends of the volume element (cell) i, 
which depends on the temperatures Tix. Eq. (6), written as ji - ji-x + ji+x = 0, 
where  

 ji =   ce dTi/dt (7a) 

 ji+x = (Ti - Ti+x)/(x2/2 ki+x) (7b) 

 ji-x = (Ti-x - Ti)/(x2/2 ki-x) (7c) 

has the form of Kirchhoff´s law for the currents at a point in a circuit. Therefore, 
the elemental cell is composed of two current-controlled sources (connected 
between the nodes  i-x → i and i→i+x) and a capacitor of value   ce. 

3 Solution of the inverse problem 

Broadly speaking, the inverse problem, to know the value of the parameters to be 
estimated in an instant, you must have calculated these parameters in the instant 
before, is a continual and iterative process composed of two loops, loop 
approximation (loop internal) and loop stretch (outer loop).  
     The “loop of stretch “ is in charge of taking the whole temperature range and 
divide it into small sections, to go after scrolling progressively. The data required 
for this loop are: initial T(Tini), final T(Tend) and number of stretch (Z). 
     Loop approximation is responsible for running PSpice go with the different 
values of k, and obtain the optimal k(kopt). For each approximation are performed 
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three simulations (k(z), k(z)+Δk, k(z)-Δk) and take the new value of k that gives 
smallest error to assign it to kopt. In each new approximation is assigned to k(z) 
its new value (kopt), as well as reduces the value of Δknew=Δk/2. 
 

 

Figure 1: Inverse algorithm of resolution. 

4 Software developed 

4.1 Introduction 

The program consists of three main windows on the first, “INICIALIZACIÓN” 
(Initialization), we enter the material data. In the second, “CONFIGURACIÓN” 
(Setup) is where you define the type of problem and all the data required for 
execution. Finally, the third window, “SOLUCIÓN” (Solution) is showing 
results. 
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4.2 INICIALIZACIÓN (Initialization) 

In the first we met (Figure 2) is the screen charge of the definition of material as 
well as various properties. 

1. Length of body to be treated, measured in meters. 
2. Density of the body to be treated, measured in kg/m3. 
3. Initial temperature before of the experiment in °C. 
4. Boundary conditions at the left and right side of the body. 

a. Heat flux measured in kW/m2. 
b. Temperature measured in °C. 
c. Forced convection: Ambient temperature (ºC) and convection 
coefficient (W/m2 ºC). 

5. Numbers of sensors. 
6. Sensor location from the left end in meters. 

 

 

Figure 2: Initialization windows. 

ARCHIVO (File) 
Necessary only for cases in which one wants to solve the inverse problem or the 
problem of initial value. 

7. Name of data file. This must be a plain text file, containing as many 
columns as the number of sensors for the first time, although it does not  
affect the process, its value is purely explanatory. Have no blank line, 
the first line coincides with the first measurement. You can use asterisks 
as wildcards. 
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8. Bar directory where the browser will look for the file specified in 
paragraph 7. 

9. Button to begin your search. 
10. Window showing all files in the directory specified in section 8 and that 

match the name given in Section 7. Once displayed, double click on the 
file to be opened to check the validity of same after verification is 
already closed and selected. 

4.3 CONFIGURACIÓN (Setup)  

The “CONFIGURACIÓN” (Setup) windows (Figure 3) consists of a series of 
boxes and buttons that are activated according to the different options we have 
selected. We can choose between direct problem, the initial value problem and 
inverse problem. So we can estimate either the conductivity, such as specific 
heat, or both at once. To define the known variables, the program gives us a 
choice between two options, linear, where we give the initial and final values of 
the known variables, or stretches, where we can define up to nine stages. 

1. Initial value of k(T). 
2. Δk. 
3. Numbers of sections selector to define the specific heat. 
4. Table to define the specific heat as a function of temperature. 
5. Simulation step, must be the same as the input. 
6. Initial T(Tini) and final T(Tfin). 
7. Numbers of stretches (Z). 

 

 

Figure 3: Setup window. 
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Table 1:  Properties of 2% Tungsten steel W. 

Temperature -100ºC 0ºC 100ºC 200ºC 400ºC 

k(W/mK) ----------- 62 59 54 48 

Cp(kJ/kgK) 0.444 0.444 0.444 0.444 0.444 

4.4 SOLUCION (Solution) 

In “SOLUCIÓN” (SOLUTION) window, is running the problem chosen and at 
the end, we show the different simulations. Placing the mouse over the graph, 
automatically appear calculates parameter values. 
 

 

Figure 4: Solution window. 

5 Results 

In our case, the parameter to calculate, is the thermal conductivity (k), 
temperature dependent, hence the need for an iterative process. So we’ve taken 
as material for our experiment a block of “2% Tungsten Steel W”, of 0.25 m 
long. The boundary conditions for one end are a constant flow of 100W/m2 and 
on the rest of the contour is adiabatic. 
     Figure 5 shows the functional in function of the number of approximations 
(Z) and the increment value of k(Δk). we see that for very low values of Δk, the 
program is unable to follow the dynamics of k(T), producing a very high 
functional results. 
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Figure 5: Numerical solution for the case 1. 

     Likewise, when Δk is very high, the program’s ability to solve the problem is 
bigger, but its sensitivity increases, being necessary to increase the number of 
approximations (Z) to maintain good results. 
     Figure 6 shows the functional as a function of the number of approximations 
and the initial value Z(k0), for Δk = 0.4. We see how the error decreases as we 
approach the initial value k0 = 62. We can also see how the errors decrease when  
 

 

Figure 6: Numerical solution for the case 2. 
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increases the number of approximations, because the range of variation of k is 
greater the greater the number of approximations. because the range of variation 
of k is greater  the greater the number of approximations Eq. (8). 
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6 Conclusions 

This paper provides a methodology together with software adequate for the 
inverse estimation of the thermal properties temperature-dependent in a solid 
medium. A numerical study has been performed to identify, the thermal 
conductivity. In the case of the studied example, the Sequential Function 
Specification Method has been used together with Network Simulation Method 
and they appear to be efficient for the estimation. No prior information is used 
for the functional forms of the unknown specific heat, because this problem is 
considered a function estimation problem. A special device that generates a 
piecewise temperature-dependent function is required in conjunction with a 
programming routine. The use of the temperature evolution versus time 
measured at many positions permits an accurate estimation.  
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