
Optimization and design of cooling systems 
using a hybrid neural network and genetic 
algorithm methodology 

S. K. Hannani, M. Fardadi & R. Bahoush 
Center of Excellence in Energy Conversion, School of Mechanical 
Engineering, Sharif University of Technology, Tehran, Iran 

Abstract 

In this paper a novel method for the design and optimization of cooling systems 
is presented. The numerical solution of free convection from a heated horizontal 
cylinder confined between adiabatic walls obtained from a finite element solver 
is used to propose a non-linear heat transfer model of GMDH type approach. In 
the context of GMDH model, three different methods depending on the structure 
of neural network are implemented. The system of orthogonal equations is 
solved using a SVD scheme. The coefficients of second order polynomials are 
computed and their behavior is discussed. In addition, to demonstrate the 
performance of the predicted model, the numerical data are divided into trained 
and prediction data, respectively. The model is based on trained data and it is 
validated using the prediction data. In the next step, using the above-mentioned 
model and the genetic algorithms, the optimum coefficient of heat transfer is 
obtained. The results reveal the robustness and excellent performance of the 
hybrid procedure introduced in this paper. 
Keywords: GMDH, GA, neural network, cooling systems. 

1 Introduction 

Design of efficient cooling systems for electronic industry has been one of the 
major challenges of the past 20 years. The main issue is the amount of heat that 
can be transferred from the electronic units to the surrounding such that the unit 
performs in its best design conditions. Indeed, the engineer is confronted to the 
non-trivial problem of finding the least geometrical space without jeopardizing 
the maximum working temperature limit of elements of the electronic system. 
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Nowadays, different methods of analysis and prediction based on standard 
numerical methods such as CFD and FEM research on commercial packages are 
employed. Experimental approaches being complex and expensive have also 
been considered as alternative research tools [1-4]. In this paper, a novel method 
of prediction and optimization is presented.  Modeling of processes and system 
identification using input-output data has always attracted many research efforts. 
In fact, system identification techniques are applied in many fields in order to 
model and predict the behavior of unknown and/or very complex systems based 
on given input-output data [5]. Theoretically, in order to model a system, it is 
required to understand the explicit mathematical input-output relationship 
precisely. Such explicit mathematical modeling is, however, very difficult and is 
not readily tractable in poorly understood systems. Alternatively, soft-computing 
methods [6], which concern computation in imprecise environment, have gained 
significant attention. The main components of soft computing, namely, fuzzy-
logic, neural network and genetic algorithm, have shown great ability in solving 
complex non-linear system identification and control problems. Several research 
efforts have been expended to use evolutionary methods as effective tools for 
system identification [7-9]. Among these methodologies, the Group Method of 
Data Handling (GMDH) algorithm is a self-organizing approach by which 
gradually more complicated models are generated, based on the evaluation of 
their performance on a set of multi-input-single-output data pairs (xi , yi) 
(i=1,2,…,M). The GMDH was first developed by Ivakhnenko [10] as a 
multivariate analysis method for complex systems modeling and identification. 
In this way, GMDH was used to circumvent the difficulty of knowing a priori 
knowledge of a mathematical model of the process being considered. In other 
words, GMDH can be used to model complex systems without having specific 
knowledge of the systems. The main idea of GMDH is to build an analytical 
function in a feed forward network based on a quadratic node transfer function 
[11] whose coefficients are obtained using a regression technique. In recent 
years, the use of such self-organizing network leads to successful application of 
the GMDH-type algorithm in a broad range area in engineering, science and 
economics [11-14]. 
     In this paper, it is shown that GMDH-type neural network can effectively 
model and predict the heat transfer, each as a function of important input 
parameters in free convection from a horizontal cylinder confined between 
adiabatic walls. In this way, three different simple heuristic methods for 
designing such networks are proposed and their performances are enhanced 
using singular value decomposition (SVD). In the next step, using the above-
mentioned model and the genetic algorithms, the optimum configuration for 
maximum coefficient of heat transfer is obtained. 

2 Modeling using GMDH-type networks  

Three different approaches for structural identification of GMDH-type networks 
are presented as follows. 
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Method I: increasing-selection-pressure approach 
In this approach, only one parameter called selection pressure is sequentially 
increased in different layers in order to determine the number of neurons in each 
layer as well as the number of layers in network. The main steps of this approach 
are described as follows. 

Step 1. Consider nN =1  neurons in the first layer from the vector of input 

variables }mx,...,x,x,x{.Varof.Vec 321= , where n is the number of input. Set 

k=1; Set selection pressure 1=kSP . 

Step 2. Construct ( ) 2/1−kk NN   neurons   according to all possibilities of 
connection by each pair of neurons in the layer. This can be achieved by forming 

the quadratic expression  ( )ji xxG ,  which approximates the output y in 
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either by solving the normal equation  
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Step 3. Set 1.01 −= −kk SPSP  (increase the selection-pressure) and select 

km neurons whose errors according to equation (2) are less than a certain value 
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Step 4. Set 1+= kk  and 1−= kk mN . If ( )1≠kN  Then go to Step 2. Otherwise 
END. 
     It should be noted that choosing the selection pressure according to step 3 is 
an important decision and can have a significant influence on the structure of the 
network. 
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Method II: pre-specified-network approach 
In this approach, number of layers in the network is per-specified as well as 
number of neurons in each of these layers. The main steps of this approach are 
described as follows. 

Step 1. Consider nN =1  neurons in the first layer from the vector of input 

variables { }nxxxxofVec ,...,,,var 321=−− , where n is the number of inputs. 

Set k =1 and 1NlayersofNumber =−− . 
Step 2. Construct 
                     ( )

2
1

'
−

= kk
k

NN
N  

Neurons according to all possibilities of connection by each pair of neurons in 
the layer. This can be achieved by forming the quadratic expression ( )ji xxG ,  
which approximates the output y in equation (1) with least-squares errors of 
equation (2) either by solving the normal equation (3) or by SVD approach 
equation (4). 

Step 3. Select the best pre-specified 1+kN  neurons out of these kN '  neurons 
according to their values of   

2r . 
Step 4. If  ( )11 Nk ≠+  Then Set  1+= kk  ; 1−= kk NN  ; go to 2. Otherwise 
END. 
     It should be noted that only one neuron is selected in the last layer. 
 
Method III: error-driven approach 
In this approach, the numbers of layers as well as the number of neurons in each 
layer are determined according to a threshold for error equation (2). In addition, 
unlike two previous approaches, some of input variables or generated neurons in 
different layers can be included in subsequent layers. It is, therefore, evident that 
the structure of such network may be more complicated than those generated in 
previous methods. The main steps of this approach are described as follows. 
Step 1. Set K = 1; Set Threshold. 
Step 2. Construct 
                     ( )

2
1

'
−

= kk
k

NN
N  

Neurons according to all possibilities of connection by each pair of neurons in 
the layer. This can be achieved by forming the quadratic expression ( )ji xxG ,  
which approximates the output y in equation (1) with least-squares errors of 
equation (2) either by solving the normal equation (3) or by   SVD approach 
equation (4). 
Step 3. Select the single best neuron out of these kN '   neurons, x' according to 

its value of   2r . 
If (Error<Threshold) Then END; Otherwise Set  { }nxxxxVarofVec ,....,,, 321=−− . 

Step 4. Set 1+= kk NN  ; go to 2. 
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Figure 1: Free convection from a heated horizontal cylinder confined between 
adiabatic walls. 

 
Table1: Root mean squares of errors. 

 
Method MSE No. Layer No. Neuron 
I 0.011203 3 6 
  0.010301 5 12 
  0.010152 6 15 
  0.00998 7 18 
II 0.011203 3 6 
  0.010422 4 9 
  0.010301 5 12 
  0.010152 6 15 
III 0.009931 5 5 
  0.008995 11 11 
  0.007264 15 15 
  0.003456 16 16 
  0.002687 18 18 
  0.001876 22 22 

3 GMDH-type neural network modeling and prediction of 
heat transfer 

Three methods discussed above are used to design GMDH-type network systems 
for a set of numerical solution of free convection from a heated horizontal 
cylinder confined between adiabatic walls (see Fig.1). The input data is obtained 
from a finite element solver reported in [15]. The selected parameters of interest 
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which affect this multi-input-single-output system are h/D, D2, Ra, respectively, 
where: 

2

32

µ
βρ TDgRa ∆

=  

In order to model these three-input-single-output set of data, each of the three 
methods previously mentioned was used separately in conjunction with SVD 
approach for the coefficient of the quadratic polynomials. The result shows that 
SVD approach for finding the quadratic polynomial coefficients is superior to 
direct solving of normal equations in most cases. Table 1 demonstrates such 
comparison of root mean squares errors (for heat transfer) using SVD by 
methods I, II and III. Accordingly figures 2 and 3 show the behavior of heat 
transfer, respectively, using GMDH-type network model constructed by method 
III in conjunction with SVD approach for the coefficients of quadratic 
polynomials. The structures of GMDH-type network for such three-input-single-
output heat transfer process which have been obtained by method II and III are 
depicted in figures 4 and 5. 
 

 
 
 
 
 
 

 
 
 
 
Figure 2: Variation of heat transfer coefficient with input data samples: 

Comparison of numerical solution with computed values (Method 
III). 

 
 
 
 
 

 
 
 
 

 
 
Figure 3: Variation of heat transfer coefficient with input data samples: 

Comparison of numerical solution with computed values (Method 
III). 
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     In order to demonstrate the prediction ability of such GMDH-type neural 
networks, the data have been divided into two different sets, namely, training and 
testing sets. The training set, which consists of 50 out of 60 input-output data, is 
used for training the GMDH-type neural network models using the three 
methods in conjunction with SVD approach for the coefficients of the quadratic 
polynomials. The testing set, which consist of ten unforeseen input-output data 
samples during the training process. In this way, table 2 demonstrates such 
comparison of root mean squares of errors (for heat transfer) using SVD by 
methods I, II and III. Accordingly, figure 6 and 7 show the modeling and 
prediction behavior of the corrected heat transfer coefficient parameters, 

k
DhNu =  

(h = coefficient of convection heat transfer, D = diameter, k = coefficient of 
conduction heat transfer, Nu = Nusselt Number) respectively using GMDH-type 
network model constructed by method III in conjunction SVD approach for the 
coefficient of the quadratic polynomials. 
 
 
 
 
 

Figure 4: GMDH-type network obtained by method II. 
 
 
 
 
 
 

Figure 5: GMDH-type network obtained by method III. 
 

Table 3: Root mean squares of errors (modeling and prediction). 
 

Method MSE(Model) MSE(Prediction) No. Layer No. Neuron 
II 0.014974 0.0069 2 3 
  0.014974 0.773007 2 4 
III 0.14974 0.003777 2 2 
  0.012611 0.003001 3 3 
  0.012063 0.002439 4 4 
  0.0115 0.002443 5 5 
  0.010826 0.002955 8 8 
  0.009807 0.009784 11 11 
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Figure 6: Variation of heat transfer coefficient with input data samples: 

Comparison of numerical solution with computed/predicted values 
(Method III). 

 
 
 
 
 
 
 
 
 
 
 
Figure 7: Variation of heat transfer coefficient with input data samples: 

Comparison of numerical solution with computed/predicted values 
(Method III). 

 
     It is evident that the performance of method III in the GMDH-type neural 
network modeling of corrected heat transfer coefficient parameters in heat 
transfer process of free convection from a heated horizontal cylinder confined 
between adiabatic walls in most cases in superior to those of both methods I and 
II. 

4 Search for optimum heat transfer coefficient employing GA 

Genetic algorithms are so called since they are modeled loosely upon the 
biological process of natural selection. They form successive populations of 
individual solutions to the problem. The algorithm attempts to improve the 
quality (referred to as “fitness” in the genetic algorithms context) of these 
individuals from generation to generation. The change in the population is 
achieved by the selection, reproduction and mutation procedures within the 
method. The operation of these three procedures is dependent upon the fitness of 
the individuals concerned. 
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Figure 8: Isothermal lines around cylinder for H/D=10 and Ra=103 obtained 

employing the novel hybrid method. 
 
 
     Genetic algorithms are characterized by the fact that all the information for 
any individual in the population is encoded using some linear encoding system. 
This (usually binary) encoding is intended to be somewhat analogous to natural 
DNA consisting of a string of four kinds of chromosomes. 
     The standard encoding technique for applying genetic algorithms to non-
linear optimization problems (where the parameters are continuous and real) is a 
concatenation of all the binary approximations to each number. 
     Having arrived at a consistent reversible encoding method and knowing that 
the initial population is randomly chosen, what remains is how to perform the 
changes from one “generation” to the next. It is achieved by a combination of 
three procedures, crossover, selection and mutation [16, 17]. 
     In this stage, in order to find the optimum heat transfer coefficient from the 
obtained equations, EDS method with 18 layers and 18 neurons was used. Cost 
function and optimization constraints are as follows: 
 
    Max. Nu = f (h/D, D2, Ra) 
           14/6 ≤≤ Dh  
                         31 2 ≤≤ D  
            100001000 ≤≤ Ra  
 
It should be noted that in algorithm of finding the maximum of heat transfer 
coefficient, in addition to crossover, mutation, and selection operators, elitism 
operator is also employed.  
     Initial population was assumed to be 50 chromosomes with 15 Genes. 
Procedure of finding maximum was repeated for 100 generations, while 
probabilities of mutation and crossover were 0.005 and 0.6 respectively. 
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     Improvement of Genetic algorithm in finding the maximum of Nu function 
can be observed in figures 9.  The solutions are as follows: 
 
h/D = 1.2452e+001   
D2 = 1.9677e+000   
Ra = 1.0000e+004 
Nu = 5.8980e+000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9:  The optimum coefficient of heat transfer obtained by Genetic 

Algorithm ( 14/6 ≤≤ Dh , 31 2 ≤≤ D  , 100001000 ≤≤ Ra ). 

5 Conclusion 

Three methods for designing GMDH-type networks have been proposed and 
successfully used for the modeling and prediction of the process parameters of 
the very complex process of heat transfer. In this way, it has been shown that 
GMDH-type networks provide effective means to model and predict heat transfer 
coefficient percentage according to different inputs. Moreover, it has been shown 
that SVD can effectively improve the performance of such GMDH-type 
networks over the traditional use of normal equations which can be constructed 
by each of the three methods. Such an application led to much simpler GMDH-
type neural networks for which the set of the obtained polynomials representing 
the corrected heat transfer coefficient as functions of respective input variables 
have also been presented. In addition, the genetic algorithm is used to obtain the 
maximum heat transfer coefficient. The results reveal the robustness and 
excellent performance of the hybrid procedure. 
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