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Abstract

variables.
ranging from lo3to 10’ and Pro= 0.71. The formulation was based on primitive
fluid properties. The penalty finite element method was used for Rayleigh numbers
problem with radius ratio 2.6 (Ro,jRin=2.6),consideringboth constant and variable
penalty finite element method for an annulus between two concentric cylinders
laminar natural convection heat transfer and fluid flow were determined using a
In this paper the effects of variable thermo-physical properties of the fluid on

1 Introduction

fluid density is still restricted to the buoyancy term.
for temperature-dependent viscosity and thermal conductivity. The variation of
differences. The next stage of approximation is to modify the method to allow
The full Boussinesq approximation is limited to moderate temperature
properties in the flow structure with or without the Boussinesq simplification.
little research has been done to check the influence of variable thermo-physical
The well-known Boussinesq approximation has been extensively used but very

and thermal conductivity vary in such a way that the
is common to assume that for temperature-dependent properties, the viscosity
properties are in the dimensionless groups, the Rayleigh and Prandtl numbers. It
the velocity components and the Nusselt number [l]. The basic effects of the
the temperature field and variable properties that can have strong effects on both

In natural convection flows, the fluid velocities are extremely dependent on
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evaluating Prandtl and Rayleigh numbers.
Prandtl number remains constant or that average properties can be used in

other properties @, p and cp)were taken as constant.
results for 0.01i Pr i I , which is representative of liquid metals and gases. All
viscosity experiments over a wide range of Prandtl number. They presented the
conducted a comprehensive set of temperature-dependent conductivity and
viscosity followed Sutherland’s law, but only for Pro= 0.71. Emery and Lee [l]
natural convection of an ideal gas where both the thermal conductivity and
simultaneous variation in the viscosity. Chenoweth and Paolucci [4] studied the
thermal field, has received little attention, particularly in conjunction with a
temperature-dependent thermal conductivity, which can significantly affect the
Yamasaki and Irvine [2] and Hyun and Lee [ 3 ] . However, the effect of

The effect of the variation of viscosity with temperature has been studied by

with temperature.
concentric pipes, considering both, viscosity and thermal conductivity to vary
steady, two-dimensional, differentially heated, square cavity problem and
flow were determined using a penalty finite element method for the classical
dependent fluid properties on laminar natural convection heat transfer and fluid
viscosity and thermal conductivity has been used. The effects of temperature-

In this paper, a modified Boussinesq approximation withtemperatwe-dependent

2 Governing equations

recommended [4] as
transfer rate, the limit of validity of the Boussinesq approximation has been
approximation used in this work. For accurate calculation of the overall heat
on the temperature. There is a physical assumption, called the Boussinesq
heat conduction coefficient, etc. The values of these constants generally depend
constants i n the basic equations such as density, viscosity, thermal conductivity,
equations of continuity, momentum and energy. There are a variety of physical
The problem under consideration is governed by steady, two-dimensional

+Tcold

- T c o l d< 0.6

viscous dissipation is assumed to be negligible.
constant except in the buoyancy term). In addition, the heat generation due to
viscosity and thermal conductivity has been used (tie density is also considered
convection, a modified Boussinesq approximation with temperature-dependent
demonstrate the effects of temperature-dependent physical properties for natural
temperature ratio should be limited to an upper value of 0.2 [4]. In order to
However, for accurate determination of velocity and temperature fields this

to overcome these difficulties, a penalty function formulation has been adopted
difficulties with the treatment of the pressure and continuity equation. In order

It is well known that formulation based on primitive variables involves
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techniques such as those used by Hughes et al. [5], Reddy [6] and Syrjala [7].
prediction of incompressible flows, especially in the context of finite element
in this study. The penalty function approach has been widely used for the

penalty method.
converge if calculated from the pseudo-constitutive relation introduced in the
field although, for the most generally used elements, pressure does not even
Therefore, inaccuracies in the pressure do not affect convergence of the velocity
restricting the space of acceptable trial functions through the penalty term.
incompressibility (or approximate incompressibility) is imposed directly by
the calculated pressures never influence the velocity field because
This then significantly reduces the number of degrees of freedom. In addition,
pseudo-constitutive equation to express the pressure in terms of the fluid dilation.
because it eliminates the pressure from the momentum equations by using a

The penalty formulation has attracted considerable interest of investigators

requirement by the weakened constraint
Use of the penalty function formulation amounts to replacing the continuity

+%+g) m

the original continuity equation.
magnitude greater than the viscosity) ensures that Eqn (2) is almost equivalent to
105-10'* (the penalty parameter should be chosen to be several orders of
function method is used. However, a sufficiently large value of A, typically
The equation of continuity is no longer satisfied exactly when the penalty
energy equations subject to the constraint of satisfying the continuity equation.
define the penalty method. The method consists of solving the momentum and
where iz is the penalty parameter. As stressed by Reddy [S], Eqn (2) does not

The dimensionless quantities can be expressed as

X 2 y 2
= ( k / p C , )

ILL "= ( k / p C p )
V L

L L

P = PL2 8:-
Th

T-T,

Pr = ( w p c , ) Ra = ~ W C P W ~ )
W P ) '&h -Tc )L3

=L=F1(e) * - k ,P O
2-L=F 2 ( Q )

(3)

an initial comparison, following Emery and Lee [l],the two factors were set to
property factors fi and f 2 given in the momentum and energy equations. For
where L is the reference length. The technique has been extended to use
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f i = f 2 =0.5+0.56'+Q2 (4)

equations can be written in dimensionless form as follows.
density, in particular, would change greatly. The governing partial differential
differences that would be required are enormous and, in the case of air, the
constant. It must be stressed that these conditions are artificial: the temperature
model to changes in these two properties, all other properties being assumed
properties have been selected to demonstrate the relative sensitivities of the
the cold surface and 2.0 at the hot surface. These very large variations of
Consequently, both factors have the value 1.0 at the average temperature, 0.5 at

equations to be solved become:
equation is eliminated from the preceding system of equations, and the final

When Eqn (2) is then used to substitute for the pressure, the continuity

reference temperature state. The energy equation remains unchanged.
Ra the Rayleigh number and the subscript 0 denotes parameters evaluated at a
components and temperature, respectively. Pr indicates the Prandtl number and
respectively; U, V, T are the dimensionless horizontal and vertical velocity
Here, X and Y denote the dimensionless horizontal and vertical co-ordinates,

3 Solution procedure

disadvantage, of course, is that a very large and computationally expensive
equation methods optimal from the standpoint of convergence rate. The
characteristic of convective heat transfer problems makes these combined
The strong coupling between equations (e.g., momentum and energy) that is
non-linearity of the system, and the strength of the coupling between equations.
The solution methods used depend on the model, computational resources, the
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equations.
equation approach must be sacrificed for alternative formulations of the discrete
constraint. To make progress with current iterative methods, the combined
that can adequately treat the dominating effect of the incompressibility
has been severely handicapped by the lack of good pre-conditioner techniques
Unfortunately, the development of iterative methods for combined equation sets
matrix methods, such as the pre-conditioned conjugate gradient (PCG) method.
schemes) is to switch from the direct, Gauss elimination method to the iterative
the matrix problem more affordable (while retaining the standard fixed point
for combined equations are prohibitively expensive. A natural choice to make
phenomena) simulations has reached the point where usual direct matrix methods
larger (more elements and higher dimensionality) and more complex (physical
matrix problem must be treated at each iteration. The requirement to perform

following procedure was employed in the present work.
Consequently, an iterative technique must be used to solve the equations and the
depend on the velocity components and temperature, which are unknown.
makes the coefficient matrix asymmetric and non-linear. The convective terms

The presence of the convective terms in the momentum and energy equations

iterations differs by less than the tolerance, Tol:
outlined procedure is repeated until the flow field computed in two consecutive
same Rayleigh number in the second iteration to re-evaluate the unknowns. The
problem. The calculated velocity and temperature fields are then used for the
solution is obtained after imposing the specified boundary conditions of the
coefficient matrices are evaluated and assembled. Then, the first iteration of the

At the beginning of the first iteration, the flow field is set to zero, and the

weighted sum of the last and current solutions is used:
for the previous value of Rayleigh number. To accelerate the convergence, a
initial guess for the velocity and temperature fields being the converged solution
is incremented by a factor of 10. The iterative procedure is repeated with the
convergence has been obtained for the given value of Rayleigh number, its value
necessary to start with a low value of Rayleigh number ( l O3 is satisfactory): once
number of unknowns. A value of T o 1 = 0.01 was used in all cases. It is
where Ay denotes the flow variable at node i and iteration n, and N is the

= 6An +(l-S)An+' (9)

nonlinear equationsis linearised using the Newton iteration technique. In the post-
evaluated numerically with the aid of Gaussian quadrature. The resulting set of
been shown to give a satisfactory convergence rate 191. The integrals are
where 6 is an acceleration parameter, 0.0 I 6< 1.0. A value of 6 = 2 1 3 has
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velocity field by solving the Poisson eqn (10) separately:
processing, the distribution of the stream function v c a n be derived using the

cylinder wall is evaluated from
subject to the appropriate boundary conditions. The local Nusselt number on the

and the mean Nusselt number is determined as

-
N U k =L Io”.;d@ k =inner, outer

271

4 Results and discussions

boundary conditions and co-ordinate system is shown in Figure 1.
variables for air and water. A schematic diagram of the physical model,
conditions because variable properties have negligible effect on the primitive
Comparisons are restricted to the case of concentric pipes with artificial

@
T-Th l

T=T,

L=Roui

Figure l . Diagram of the computational domain for the concentric pipes

temperature-dependent thermal conductivity cases.
lower near the cold surface than for the temperature-dependent viscosity and
magnitude of the vertical component velocity V is higher near the hot surface and
and 4(b). As shown in Figure 4(b), for the case of constant properties the
numbers. The velocity components U and V at @ = 90” are shown in Figures 4(a)

Figures 2 and 3 illustrate isotherms and streamlines for a range of Rayleigh

are affected by both the thermal conductivity and the viscosity. However, the
Temperature distributions across the annulus at @ = 90”, shows in Figure 4(c),
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opposite sense.
thermal conductivity effect is greater than the viscosity effect, and is in the

viscosity.
significantly by the varying thermal conductivity but insignificantly by the

The local Nusselt number on each pipe, shown i n Figure 4(d), is affected very

(a) Constant (b) k ( T )
P m

(c>Pm ( 4 k ( T I &L
properties

conditions).
numbers and Pro= 1, for constant and variable properties (artificial

Figure 2. Isotherms for two-dimensional concentric pipes at various Rayleigh
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Ra,,=lo5

(a) Constant (b) k ( r )
P m

(c) Pm ( 4 k m 8.c
properties

properties (artificial conditions).
Rayleigh numbers and Pro= 1, for constant and variable

Figure 3. Streamlines for two-dimensional concentric pipes at various
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(d) Nusselt numbers for inner pipes

and variable properties.
pipe for concentric pipes at R%= 5x104 and Pro=l, for constant

Figure 4. Distribution of U, V, 8at q j = 90" and local Nusselt numbers in inner
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5 Conclusions

separate effects.
of viscosity and thermal conductivity can be estimated by combining their
where they are in the opposite direction. The effect of a simultaneous variation
temperature profiles are in the same direction for water, in contrast to gases
and local Nusselt numbers. The effects of viscosity and thermal conductivity on
varying thermal conductivity were most noticeable in the temperature profiles
the varying viscosity has most effect on the fluid velocity, while the effects of
components and temperature are affected by the property variation. However,
conductivity and viscosity are temperature-dependent, both the velocity
property variation on natural convection heat transfer. When the thermal
A wide range of numerical results has been obtained to study the effect of

combination a reduction of about 0.2%.
constant properties, variable thermal conductivity an increase of 0.2% and their
dependent viscosity causes a reduction in Nu of almost 0.5% compared with
overall Nusselt number over the temperature ranges employed, temperature-
negligible effects on the natural convection. In terms of their effects on the
temperature dependent viscosity and thermal conductivity of air and water have

The results show that, over the temperature ranges considered, the

demonstrated that the program is capable of giving stable solutions in such cases.
simulation done assuming artificially large variation of properties has
changes of viscosity and thermal conductivity with changing temperature. The

Some viscous liquids, such as glycerine and silicone oil, exhibit significant
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