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ABSTRACT 
In this work, a comparative study of numerical formulations for the analysis of soil-pile interaction is 
presented. These formulations consist of the coupling of the Boundary Element Method (BEM) with 
the Finite Element Method (FEM). The pile may be subjected to horizontal or moment loading 
applied to its top. The soil is supposed to be a semi-infinite, elastic, isotropic continuum and is 
modeled by BEM. The pile is either represented by a single finite element or as a number of usual 
beam finite elements and the pile-soil interface tractions are represented by constant, linear, quartic 
and high-degree polynomial functions. Examples of individual piles subjected to horizontal loading 
are analyzed with the formulations presented, and the displacements and the diagram of the bending 
moments along the pile are compared. 
Keywords:  boundary element method, finite element method, finite difference method, pile-soil 
interaction. 

1  INTRODUCTION 
Soil-structure interaction is currently one of the problems that has received special attention 
from researchers in the most diverse research centers, mainly for its practical applications. 
     The piles of a foundation system beyond vertical loads are often subjected to high 
horizontal forces that can be caused by wind, sea waves, earth movement, etc. 
     Due to its complexity only with numerical methods the study of pile-soil interaction is 
possible. The numerical methods most used in this study are finite difference method, finite 
elements and boundary element method. The pile is usually modeled by Finite Difference 
Method (FDM) or Finite Element Method (FEM). Although the soil can also be modeled 
by the finite element method, the large number of elements required to properly represent 
the soil makes such analysis impracticable. Thus the soil is generally represented by the 
fundamental solutions of Mindlin [1] or Kelvin [2] or by others obtained analytically 
considering the soil formed by layers of different physical properties [3]. 
     In relation to the study of soil-structure interaction in which the soil mass is represented 
by a continuous three-dimensional medium, several authors presented works such as 
Cheung and Nag [4], Poulos [5], Fatemi-Ardakani [6], Hemsley [7], Messafer and Coates 
[8], Matos Filho et al. [9] and many others. 
     With respect to the piles in Poulos [5] a formulation is presented for this study where the 
piles are analyzed using the beam theory and its differential equation is represented by 
finite differences. Another alternative is to analyze the pile using the finite element method. 
In this case the pile can be modeled as a single or several finite elements. The results for 
each pile representation vary from one to another. This work presents a comparative study 
of formulations for the analysis of the pile-soil interaction via BEM/ FEM coupling. The 
pile is subject to horizontal loading and bending moment and is modeled by the finite 
element method initially as a single element and the pile-soil interaction tractions are 
approximated by a cubic, quartic and high-degree polynomial functions. In sequence the 
pile is modelled by several usual beam finite elements and the interaction tractions adopted 
for each pile element are cubic, linear and concentrated forces at the nodes of the finite 
elements. The soil is modelled by the boundary element method and is assumed to be a 
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semi-infinite continuum. Numerical results obtained with the various formulations are 
presented together. 

2  SOIL EQUATIONS 
The integral equation which relates the displacement ui at a generic point s in the soil with 
the pile-soil interface tractions ( )jp s  is given by 

*
i ij ju u (p,s)p (s)d (s)


  ,     (i,j = 1,2,3),                               (1) 

where   is the pile-soil interface area. 
     The hyper singular boundary integral equation, when used, is given by: 

3 3

*
i,x ij,x ju u (p,s)p (s)d (s)


       (i,j = 1,2,3),                            (2) 

where u*
ij(p,s) is Mindlin’s [1] fundamental solution for the displacement at point s in 

direction j due to a unit load acting at point p in direction i; pj is the pile traction in direction 
j assumed to be a line-load into soil domain. In Appendix A the fundamental solution for 
horizontal displacements is presented. 
     Eqns (1) and (2) can be written as: 

3 3

Ne Ne
* *

i ij j i,x ij,x j
1 1

u u (p,s)p (s)d (s) , u u (p,s)p (s)d (s)
 

      ,     (i,j=1,2,3),     (3) 

where Ne is the number of line load (piles) immersed in the continuous medium. The 
approximating domain functions for the pile-soil interface tractions in the coupling BEM/ 
FEM are considered in two different ways. For the first each pile is represented by a single 
finite element and in this case the domain functions for tractions at the interface pile-soil for 
direction X1 are given by polynomials of degrees 3, 4, 5, and 9. These polynomials are 
written to represent the variation of the tractions along the pile. For the degree 4 polynomial 
besides the traction nodal values, the traction derivative (∂p/∂x3) is also used as a nodal 
parameter at the top of the pile. For this polynomial the hyper-singular displacement 
equation (∂u1/∂x3) is also being used. These functions for degrees 3, { }  and 4 { }  are 
given by: 
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with ξ=z/L where ξ is the dimensionless depth and L is the total depth of the pile. In the 
second formulation the pile is divided into several finite beam elements and three other 
functions for the tractions in the directions X1 along each element are considered. The first 
is a linear function and the second is a cubic function, the same one used to represent the 
displacements of the usual beam finite element. It is also considered as a third formulation 
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that the interactions pile-soil tractions are concentrated forces applied at the nodes of the 
elements. The linear and cubic function are given by 

 

2 3
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ic function

,                       (5) 

where pi, (∂ps/∂x3)i, pj, (∂ps/∂x3)j are the nodal values of the interaction tractions and its 
derivatives at the nodes of the finite elements. 
     After performing all integrations in eqns (1) and (2) the following system of equations is 
obtained 

    su psG ,                                                         (6) 

where {us} is the vector of nodal displacements and {ps} is the vector with the nodal values 
of the interface tractions. 

3  SYSTEM OF EQUATIONS FOR THE PILE 
The pile is modelled by the finite element method in two deferent ways. First the pile is 
considered a single finite element with lateral displacements in direction X1 as nodal values 
and one nodal value for rotation about X2, illustrated in Fig. 1 for a polynomial with degree 
4. The second the pile is divided into several usual beam finite element with nodes at its 
ends and with 4 nodal parameters, the horizontal displacements and their derivatives. 
     The potential energy of the pile is given by [10] 

L Lp p 2 1
1ap 1 1 x1

0 03 1

E I
" (z)dz F u M P (z)u(z)dz

2
u

u
x


    

  ,                         (7) 

 

 

Figure 1:    Model of the pile. (a) Forces at the top of the pile; (b) Nodal displacement 
parameters. 
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where Ep is the longitudinal modulus of elasticity of the pile; Ip is the moment of inertia of 
the pile; Px1 is the horizontal traction along the pile, F1 and M1 are the horizontal load 
applied at the top of the pile,

1u is the horizontal displacement at the top node of the pile and 

1 3/u x   is the derivative of the horizontal displacement at the top node of the pile. 
     Minimising the total potential energy the following system of equations can be obtained: 

      p pK u F Q Pp     ,                                             (8) 

where [Kp] is the stiffness matrix of the pile; {up} is the vector of pile displacements, 
including rotations and lateral displacements; {F} is the vector of equivalent nodal forces 
arising from external loads; [Q] is the matrix that transforms element tractions to 
equivalent nodal forces; {Pp} is the pile-soil interface traction vector. 

4  BEM/FEM COUPLING 
Reordering the soil equations system (6) results in: 

     1
s sp G u
 .                                                      (9) 

     Taking account the force equilibrium that must hold along the interface between the pile 
and the continuous medium, viz.: 

   s pp p 0  .                                                      (10) 

     Eqns (15) and (16) can be combined to give: 

     c p sK u F [M] u    ,                                             (11) 

where: 

    1Q G M  .                                                     (12) 

     Now matrix [M] must be augmented to be of the same order as matrix [Kc]. Hence, if, 
for instance, the pile is modelled as a single element with cubic approximation for the 
tractions one columns of zeroes is added to [M], which stand for the neglected rotations 
about axes X2 in the soil. The enlargement of matrix [M] is denoted by the addition of a 
bar:  M . As a consequence, the displacement vector in the soil equation must also be 
augmented: 

  1
1 2 3 4

3
   T

s
u

u u u u u
x

 
  

 
.                                               (13) 

     If the traction’s approximation is a quartic polynomial the hyper singular boundary 
integral equation of the displacement is used and so there is no need to add a column of 
zeroes 
     From the displacement compatibility, we have: 

     s pu u U  ,                                                   (14) 

and so: 
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     cK M U F      .                                                  (15) 

     Finally 
   K U F    ,                                                          (16) 

in which K    is the final BEM/FEM coupling stiffness matrix;  U is the vector that 

encompasses all the nodal displacements of the system, including rotations; {F} is the 
vector of external loads applied to the top of the pile (horizontal forces and bending 
moments). 

5  EXAMPLES 
In order to compare results obtained with various formulations, a reference formulation 
must be defined for this purpose. The formulation that provided the best results is that in 
which the pile is divided into several finite elements with linear approximation for the 
tractions at the interface with the soil. Results obtained with this formulation with the pile 
divided into 20 finite elements show excellent agreement with those presented by Poulos 
[5]. Initially, the results obtained with Poulos formulation and the BEM/FEM coupling  
for the pile shown in Fig. 2 are presented. The results presented are the displacements along 
the pile assuming it has a radius equal to 0.3048 m and its length is 6.096m. The inertia 
moment is 3 46.779.10  m , Epile = 21111000 kN/m², Esoil = 211110 kN/m² and the force 
applied at the top is 181.6 kN, the X1 direction. The Poisson ratio is 0.2. 
The results are presented with the following notations: 
 BEM/FDM: Poulos Formulation. 
 BEM/FEM 1EL: Formulation in which the pile is represented by a single finite 

element. 
 BEM/FEM Linear: Formulation with the pile divided into finite elements and linear 

approximation for horizontal interface tractions. 
 

 

 

Figure 2:  Pile data. 
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 BEM/FEM Quartic: Formulation with the pile divided into finite elements and fourth 
degree polynomial approach for horizontal interface traction. In this formulation the 
hyper singular equation of the displacement is also used. 

 BEM/FEM Hyper Singular: Formulation in which the pile is represented by a single 
finite element and fourth degree polynomial approach for horizontal interface traction. 
In this formulation the hyper singular equation of the displacement is also used. 

     In the Fig. 3 the results for pile of Fig. 2 are presented. The results obtained with 
BEM/FEM Linear are for a 9 finite element mesh. One can observe a good agreement 
between the results presented. However as the pile length increases, the BEM/FEM 1EL 
results are smaller than those obtained with BEM/FEM Linear as indicated in Fig. 4 for the 
same pile as the previous example now with L = 12.184 m. The results obtained with BEM/ 
FEM Linear with the pile divided into more than 18 finite elements are practically the 
same. These results show that the formulation BEM/FEM 1EL is more rigid than the BEM/ 
FEM Linear and that increasing the number of nodes along the length of the pile and using 
the formulation that considers the pile as a single finite element does not improve the finite 
element efficiency. 
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Figure 3:  Displacement of the top of the pile. 
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Figure 4:  Displacement of the top of the pile obtained with BEM/FEM formulations. 
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     Next in Fig. 5 the results obtained for a pile of length 6.096 m are presented with the 
formulation that considers the pile a single element and with 4, 5 and 9 nodes defined along 
its length. Also presented are the results obtained with the formulation in which the pile is 
divided into several finite elements, in this case considering a division of the pile into 20 
elements of the same length. 
     It can be observed that increasing the degree of the polynomial leads to results that differ 
from those obtained with polynomial of lower degrees and with the results of the 
BEM/FEM. 
     Next Fig. 6 show the horizontal displacements of the pile of Fig. 2 now with a moment 
M = 100 kNm applied on its top. 
     The bending moment diagrams for the pile are shown in Fig. 7. It can be seen that 
increasing the number of nodes along the pile results in a worsening of the results. 
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Figure 5:  Displacement of the top of the pile obtained with BEM/FEM formulations. 
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Figure 6:    Horizontal displacement due to a concentrated bending moment applied on the 
top of the pile. 
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Figure 7:    Bending moment diagram due to the horizontal force applied at the top of the 
pile. 

     Next example is same pile with L = 6.098 m now considering the BEM/FEM Hyper 
Singular formulation in which the derivative of the displacement of the soil is also used 
compatibilizing rotations of the soil and the top of the pile and formulation BEM/FEM 
Quartic, which also uses the hyper singular equation for the soil compatibilizing pile and 
soil rotations at all finite elements nodes. The results of these analysis are shown in Fig. 8. 
     These results show that the use of the hyper singular equation makes the system more 
flexible and none of the presented results approaching those obtained with the other 
formulations indicated that the hyper singular equation is not suitable for analyzing this 
problem. The above results demonstrate that the modeling the pile with the usual finite 
beam element with linear approximation for the interaction tractions provide more 
consistent results. 
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Figure 8:  Displacement of the top of the pile obtained with BEM/FEM formulations. 
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     In the sequence are now compared the results obtained with two formulations in  
which the pile is divided into finite elements for usual beams and considering the 
interaction tractions linearly distributed or as concentrated forces at the nodes of the finite 
elements. Fig. 9 show the horizontal displacements along the pile shown in Fig. 2 now with 
Lp = 20 m. It can be seen that the two results are practically the same and that the punctual 
formulation is more flexible than the linear. 
     In Fig. 10 is presented the results obtained with the same formulations for the pile of 
Fig. 2 with length L = 6.096 m varying the number of finite elements. The results show that 
both formulations give practically the same results. 
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Figure 9:  Displacements along the pile obtained with punctual and linear formulations. 
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Figure 10:    Displacements at the top of the pile with linear and punctual formulations as a 
function of the number of finite elements. 
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6  CONCLUSION 
In this paper a comparative study of numerical formulations for the analysis of pile-soil 
interaction with the pile subjected to horizontal loading is presented. The soil is represented 
by its integral equation and its respective derivative and the pile is modeled by finite 
difference method and the finite element method. The pile can be represented by a single 
finite element or several usual finite elements and the load on the interface is represented by 
linear or quartic functions and also by concentrated loads. Analyzing the results it can 
conclude the following. 
     The BEM/FEM coupling where the pile is represented by a single finite element the 
results for the short pile are in accordance with those obtained with other formulations 
however the model is more rigid than the others for long piles. When the pile is modeled by 
finite element with linear approximation for the traction in the pile-soil interface the results 
obtained show a convergence of results to a final value. When the interaction forces are 
approximated by concentrated forces the results are very close to those obtained with the 
linear approximation. However, the linear model becomes more suitable for analysis since 
this implies that the pile is continuously in contact with the soil while in the punctual 
approximation the pile is only in contact with the soil at the finite elements nodes. 
     The formulations that used the hyper singular displacement equation were more flexible 
than the others. From the presented studies it was concluded that the most suitable 
formulation for analyzing the interaction soil-pile where pile is subjected to horizontal 
loads is that the pile is divided into usual finite beam elements with linear approximation 
for the interface tractions. 

ACKNOWLEDGEMENT 
This work was carried out with CNPq support, the National Council for Scientific and 
Technological Development, Brazil. 

APPENDIX A: MINDLIN’S FUNDAMENTAL SOLUTION  
FOR HORIZONTAL DISPLACEMENTS 

Mindlin’s fundamental solution for the horizontal displacements and its derivative at point s 
due to a unit load acting at point p, Fig. 11, is given by 
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where 
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Figure 11:  Mindlin problem. 
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