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Abstract

In modern structural control the application of discrete modal sensor arrays is a
commonly used technique to obtain the modal state vectors. In this paper, a genetic
algorithm is used to find the optimal positions to place modal sensor arrays on sim-
ple structures such as beams, plates and shells. The performance criterion is taken
as the steady state observability Grammian of the system and includes spillover
prevention as well. The performance of optimally placed modal sensors in the lin-
ear range is discussed. The variation in the performance of these modal sensors in
the nonlinear range is investigated.
Keywords: geometrical nonlinearity, modal sensors, Lyapunov equation, genetic
algorithm.

1 Introduction

There has been consistent research on smart materials and structures for the last
two decades. Geometrically linear theories and numerical methods have been
developed by many authors, e.g. Crawley and de Luis [1], Tzou and Tseng [2].
Considerably less work can be found in the area of geometrically nonlinear mod-
elling of smart structures. Structural nonlinearity has been taken into account for
interlaminar stress analysis by Icardi and Di Sciuva [3], for large deflection shape
control in Yi et al. [4], Mukherjee and Chaudari [5] and Lentzen and Schmidt [6].
Active buckling control and post-buckling analysis has been done by Krishna and
Mei [7] and Chandrashekhara and Bhatia [8].

Piezothermoelastic analysis including nonlinearity is discussed in Tzou et al. [9]
and Pai et al. [10].
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In order to implement structural vibration control in a modern fashion, one
should be able to sense the modal amplitudes. Several possibilities of modal sens-
ing can be found in the literature. Clark and Burke [11], Lee and Moon [12],
Gawronski [13] are some of the earlier researchers, who worked on modal sen-
sors. The optimal locations of sensors in intelligent structures is an important issue
in the research of present day, since an arbitrary decision can degrade their per-
formance. In order to find the optimal positions of these modal sensors, genetic
algorithms (GAs) can be used as a searching method. Some of the earlier success-
ful attempts can be found in the works of Sadri et al. [14], Han and Lee [15], where
GA is used to find optimal places for both sensors as well as actuators.

In the present paper discrete array sensors are used to filter the modal ampli-
tudes. To find the optimal locations of modal sensors the observability of the sys-
tem should be investigated to obtain the best performance with the least number
of sensors. The performance criterion for the selection of the sensor positions is
taken as the steady state observability Grammian of the system. The steady state
observability Grammian is obtained by solving the Lyapunov equation. The per-
formance of genetically optimised sensor arrays in the linear range is discussed,
and the influence of structural nonlinearity is investigated.

2 Structural model

The FE analysis of the structural response is performed using the theory of com-
posite laminated shells given by Schmidt and Reddy [16]. The geometrically non-
linear strain displacement relations are based on the Reissner-Mindlin hypothe-
sis and are valid for small strains and moderate rotations of the midsurface nor-
mals [16]
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The internal and external virtual work are evaluated in a total Lagrangian fash-
ion. The second Piola-Kirchhoff stress and Green-Lagrange strain are chosen to
express the mechanical part of the internal virtual work. Consequently, the electric
variables are defined as referring to the initial undeformed configuration [17].

3 Performance criterion

The performance criterion to optimise the modal sensor positions requires modal
voltages. The linear equations of motion of a laminated composite structure with
embedded piezoelectric layers can be written as[
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where the above matrices are found in Lentzen et al. [17]. There, M is the mass
matrix, Kqq is the linear elastic stiffness matrix, Kqφ = Kφq are the linear electro-
mechanical coupling matrices and Kφφ is the piezoelectric capacitance matrix. The
electromechanical response of the structure is denoted by {q, φ}, where q and φ
are the system’s generalised displacements and sensor voltages, respectively. The
externally applied forces (Fe) and charges (Qe) are denoted by the right sub-
script e.

After static condensation of the electric variables, equation (2) can be written in
modal form as

p̈j + ω2
j pj =

R∑
L=1

B
′
jLVL (3)

where p̈j , ṗj and p represent the jth modal acceleration, velocity and displacement,
respectively. The natural frequency of the jth mode is denoted by ωj . The piezo
sensor voltages can be represented as

ΦL =
∞∑

j=1

C
′
jLpj . (4)

Here the induced voltage of the Lth sensor and the control voltage at the Lth actua-
tor are denoted by ΦL and VL, respectively. The sensing constant of the Lth sensor
due to unit modal displacement of the jth mode is denoted by C

′
jLand the jth modal

actuation constant due to unit applied voltage of the Lth actuator is denoted by B
′
jL.

In order to address the observability problem one should convert the standard
FE equations into state space equations as follows [15]:

ẋ = [A]{x} + [B]{u} (5)

y = [C]{x} (6)
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ṗ1 ω1p1 . . . ṗn ωnpn
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A linear time invariant system (A,B,C), with s outputs is completely observable,
if any of the following conditions are satisfied [19].

1. The (sn × n) observability matrix [O] has rank n, where

[O] =
[

[C] [C][A] [C][A]2 · · · [C][A]n−1
]T

(8)

2. The observability Grammian [Wo] is full-rank

[Wo] =
∫ ∞

0

e[A]t[C][C]T e[A]T tdt (9)

In fact [Wo] is the solution of the Lyapunov equation:

[A][Wo] + [Wo][A]T + [C][C]T = 0 (10)

The observability test based on the rank is binary in nature (i.e. it tells us whether
the system is observable or not). Additionally the extent of observability is
required. Therefore, in the present work the objective function proposed by Hac
and Liu [18] is used, given by:
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where no and nr are the number of observed modes and residual modes, respec-
tively. For sensor optimal places, λj is the eigenvalue of the steady state observ-
ability Grammian (i.e. [Wo]). Note that in the objective function (i.e. Eq. 11) a
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product term is included to account for least controlled modes. If any of the modes
is least controlled then the total objective function value goes to zero.

4 Genetic algorithm

Genetic algorithms (GAs) are random search techniques based on the mechanics
of natural selection and genetics. Genetic algorithms are used to explore the global
extremum of the given linear or nonlinear function. Although randomised, genetic
algorithms can efficiently explore the new generation with better fitness.

The GA is used to maximise J (i.e. Eq. (11)) for a given number of sensors.

4.1 Algorithm

1. Create a random initial population of sensors.
2. Evaluate each member of the current population by computing its fitness

value (i.e. J as given in Eq. (11) ), and select parents based on their fitness
value.

3. Children are produced by mating a randomly selected pair of parents at a
randomly selected site, known as crossover and by making random changes
to a single parent, known as mutation.

4. Replace the current population with the children from the new generation.
5. Repeat the algorithm for a prescribed number of generations.

4.2 Modal sensors

The principle of discrete modal sensor arrays is depicted in Figure 1. By choosing
the gains αi in a particular way, the modal sensor will respond only to the mode j.
The gains are obtained by solving the orthogonal system of equations

[G]{αj} = {ej}, (12)

where [G] = gki, which is the modal voltage of the kth sensor due to the unit
modal displacement of mode i, {αj} are the linear gains of all sensors to sense
mode j and {ej} is the unit vector in the direction j.

αα

ϕϕϕ

α

Linear combiner

Sensors1 2 n

21 n

Structure

Modal sensor signal

Figure 1: Principle of the discrete modal sensor array.
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5 Numerical results

5.1 Clamped plate

A plate, with the dimensions [110×110×1] mm as shown in Figure 2, is taken as a
numerical example. The plate consists of aluminium and is meshed with a [11x11]
grid. The material properties of the aluminium and PVDF layers are displayed in
Table 1. The position of the four patches has to be optimised in order to observe the
first four modes. The GA parameters used in the analysis are population size (30),
crossover probability (50%), mutation probability (10%) and number of genera-
tions (40). After application of GA, the optimal sensor positions for the plate are
obtained as depicted in Figure 2. The first four natural frequencies are calculated
as 728 Hz, 1486 Hz, 1486 Hz and 2193 Hz.

Table 1: Aluminium and piezo material properties.

Aluminium PVDF

E [Gpa] 70 2
ν [−] 0.3 0.3

ρ [kg/m3] 2700 2800
d31 [m/V ] − 2.2 · 10−10

d33 [m/V ] − 1.062 · 10−11

81

4137

85

1 11

121111

11
0

m
m

110 mm

86

38

111 121

111

110 mm

11
0

m
m

82

42

Figure 2: Optimised configuration. Figure 3: Arbitrary configuration.

In order to examine the effectiveness of the modal sensors, the transient modal
sensor signals have to be investigated. One of the popular explicit time integration
techniques (i.e. central difference method) is used to integrate the equations (2)
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in the time domain. As an initial displacement field, the superposition of the first
four modal displacements is prescribed, with the respective modal amplitudes of
0.01, 0.007, 0.007 and 0.003 resulting in a mid-point deflection of 0.3616 mm. Fig-
ure 3 shows an arbitrary configuration of sensors that is considered in the present
work for comparison purpose. Figures 4-7 compare the results obtained with the
optimised and the arbitrary configuration. It can be observed in Figures 4-7 that the
modal sensor signals for the optimal sensor configuration are correct and are barely
aliased with those of higher modes. In case of the arbitrary sensor configuration the
modal sensor signals are strongly aliased with those of higher modes. Figures 8-9
show the modal signals for both optimal sensor configuration and arbitrary sensor
configuration in the nonlinear case. It can be concluded that the induced membrane
stresses which are not considered in the linear and modal analysis are the main
cause for the failure of modal sensor arrays in the nonlinear range of deformations.
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Figure 4: First mode signal. Figure 5: Second mode signal.
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Figure 6: Third mode signal. Figure 7: Fourth mode signal.
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Figure 8: Nonlinear first mode signal. Figure 9: Nonlinear second mode
signal.

6 Conclusions

In the present work, GA is used to find optimal placement for modal sensors. Tran-
sient analysis is performed with linear and nonlinear FE, based on first-order shear
deformation moderate rotation theory. By numerical example it is shown that the
principle of modal sensor arrays yields good results for the genetically optimally
placed sensor patches in the range of small displacements. In the geometrically
nonlinear case, it is found that the induced membrane stresses are the prime cause
for the failure of modal sensor arrays.
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