
Towards best achievable floating point
performance for linear algebra computations
on COTS Beowulf clusters

S. Fourmanoitl, R. Royl &F. Bertrandz
‘ Department of Computer Engineering

2 Department of Chemical Engineering

Ecole Polytechnique de Montrkal, Canada

Abstract

The solution of linear systems is required for many modern engineering applica-
tions from computational fluid dynamics to biomedical imaging. This paper shows
how a low cost Beowulf cluster can be optimized to handle various CPU-intensive
linear algebra computations using the scalable linear algebra package (ScaLA-
PACK). The paper focuses on the techniques and tools that we have developed
to enhance the performance of a basic reference implementation. The tuning of
system performance includes both partial recoding of some modules and careful
engineering of clusters design, doubling speedup as compared to the reference
implementation.

1 Introduction

In a lot of engineering applications such as CFD or biomedical imaging, the solu-

tion of large linear systems is required. Linear algebra automated handling has
always been a computer-intensive activity. The improvements in coding techniques

and processor speed have led many engineers to ask for increasingly larger system
manipulations, and this demand currently exceeds each increase in computational
power. This behaviour has been amplified by a recent trend in many engineer-
ing schools to teach computer-aided numerical differential equations and to use
generic code solvers, thus broadening the users base for such methods.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

4 Applications of High -Perforntance Computing in Engineering VII

Not so long ago, the solution of huge CPU-intensive linear systems were possi-

ble only at meteorological centers or similar facilities, where the computing power
was often needed for critical analysis. Unfortunately, most organizations outside

of government and academia could not access these resources. Alternatively, large
corporations and universities could purchase shared-memory supercomputers such
as those built by IBM or SGI. Those machines were however expensive, with
unclear upgrade/recycling path and relatively high maintenance costs. Smaller
companies and research institutions simply could not afford such proprietary sys-
tems. Thus, the solution of large linear systems (with typically >106 unknowns)

were often beyond the reach of many of the engineers and researchers whose appli-
cations could depend on it.

This paper discusses the handling of large linear algebra system using inexpen-

sive Becwd? clusters [1]. Over the past few years, very positive claims have been
made in favor of PC clusters, and great pieces of software such as ScaLAPACK
were built to specifically drive such computations on virtually all distributed mem-

ory systems, including Beowulfs. However, on such very low cost clusters, out-of-
the-box installation of ScaLAPACK will unlikely lead to satisfying through-puts,
unless some significant tuning is made on both the software and the hardware
sides. From a standard reference setting of ScaLAPACK over Fast-Ethernet, this
paper will show how using specialized floating point instructions and a simple yet

carefully layout network topology can lead to better, scalable overall performance
for virtually all linear algebra manipulation routines enclosed in ScaLAPACK.

The paper is organized as follows. In section 2, we will describe the structure

of ScaLAPACK and give relevant details for superimposing communications in
the linear algebra solvers. Section 3 is devoted to a description of techniques and
tools available for fine-tuning this specific library on clusters. Measures of perfor-
mance are given for a test-bed facility composed of 16 Athlon nodes with a main
server at the Centre de recherche en calcul appliqu6 (CERCA); communications
are optimized by adding 4-node switches over a Cartesian topology. Finally, we
draw some conclusions in section 4.

2 ScaLAPACK architecture

2.1 Overview

Rephrasing its authors [2], the Scalable Linear Algebra Package (ScaLAPACK)
was written to provide various efficient linear algebra computations on a dis-

tributed memory computer: linear systems, least squares and eigenvalues routines
operating on dense, narrow-band and tridiagonal matrices were proposed, using
aggressive block segmenting algorithms to minimize communication whenever
possible. As shown on Figure 1, the ScaLAPACK design is also very well modu-
larized. In fact, one of the great strengths of ScaLAPACK is its ability to use, on
local computational nodes, Level 2 and 3 BLAS (Basic Linear Algebra Subpro-

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

Applications of High-Performance Computing in Engineering VII 5

grams for matrix-to-vector and matrix-to-matrix operations) for all the computa-

tions. On the other hand, a communication package, called BLASC (BLAS Com-
munication Subprograms) is responsible for all the required inter-process commu-

nications, coordinating the overall operations with PBLAS (Parallel BLAS), an
interface enabling ScaLAPACK routines to look roughly the same as their serial
LAPACK counterparts.

ScaLAPACK

q-q

1 I 1

1 I

1 1

Ww
Figure 1: Overall ScaLAPACK packaging using MPI

2.2 The heart of ScaLAPACK: the two-dimensional block-cyclic distribution

With ScaLAPACK, machine-specific code for computation is entirely kept into

BLAS, and so is machine-specific code for communications in BLASC. This nice
component-based layout has been made possible by the data distribution scheme
adopted in ScaLAPACK, called the two-dimensional block-cyclic distribution [2].
In a nutshell, this data mapping between computational processes looks a lot like
shuffling a card deck. From a matrix A = [ai,j]~ X~, we create P~ X PC process

matrices noted~~ = ~~i,,]q~r, k c {O, 1, . . . ,PrPC – 1} such as:

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

6

and

Applications of High-Performance Computing in Engineering VII

{

[m/PrJBr , k $0 mod [m/Brl

q = [m/PTJB, + m mod B. , k s O mod [m/Br]

{

~ = in/PcJBC , [k/Pcl # Pr

[n/PCJBC + n mod B. , [k/Pcl = P.

(1)

(2)

~ki,j = a(k+P.Li/B.j)B.+i modB., (.k+P. [j/B. j)B. +j modB.. (3)

where BT and BC are respectively the block row and block column sizes, and
all i and j indices start from zero. This scheme has great overall properties of
load balancing, intra/extra process data alignment, allowing both Level 3 BLAS
operations [3] and simplified communications [4] because - and this will be its
essential property - the process matrices ~~ are in fact part of a larger 2D process
“grid” (hence the P. and PC notation), mapping one-to-one content of matrix A on
a matrix G defined as:

G = F’JP. xPc = [b~i,j]~m.d P., L~/Pr]]mxn (4)

where all data in a column (resp. row) of A are still present in the corresponding

column (resp. row) of G, making the processes belonging to the same column or
row of the PC x Pr process grid the only neighbors potentially needing to commu-
nicate.

This distribution is the general mapping used with dense matrix. With sparse
matrices (either tridiagonal or narrow-band) also handled by ScaLAPACK, other
mappings (ID row or column block-cycling distributions) are used: they are spe-
cial cases of this one when PC or PT equals one.

As an illustration, if we decide to distribute a 4 x 4 matrix on a 2 x 2 process
grid using 1 x 1 block size, we would obtain the distribution shown on Figure 2.

aO,O ao,l ao,z

al,o al,l ::1: EiElmal,z ,

az,o az,l az,z

as,o as,l as,z
‘; “WR

Figure 2: Block-cyclic distribution on a 2 x 2 grid

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

Applications of High-Performance Computing in Engineering VII ‘7

3 Techniques and tools for fine-tuning ScaLAPACK on Beowulf
clusters

From the previous section, we can assume that there are two main strategies for
optimizing ScaLAPACK on COTS Beowulf clusters: replacing the floating point
intensive BLAS or the node-local communication layer BLASC with new imple-
mentations.

In the next two subsections, we will look at both approaches separately. A short
analysis of today’s typical COTS hardware - over 1 GHz single or dual x86 com-
puters (Intel or AMD) with a fair amount of RAM on Fast-Ethernet - quickly
shows where optimization will be the most significant. The 1.4 GHz AMD Athlon
Thunderbird core, for instance, can easily sustain almost one floating point oper-

ation per clock cycle on any reasonably dense computation code in both 32 bits
and 80/64 bits mode without any specific optimization (leading to a 1.4 GFlop

sustained performance). On the other hand, Fast-Ethernet, with a peak at 12.5
MB/s throughput, can only transmit a maximum of 3 millions of 32-bit results
in duplex mode (neglecting any communication overhead). Communications are

therefore absolutely assured to be the bottleneck. Performance tests done on our
16-node AMD Athlon cluster with Fast-Ethernet (Intel EtherExpressPro 100, using

MPICH 1.1.0 as the BLASC underlying message-passing library) show how well
the BLASC and Level 3 BLAS perform on this architecture. Table 1 shows the flop
rate achieved by matrix multiplication BLAS routine: routine SGEMWDGEMM

($’Mjw) on a node versus the theoretical peak performance of that node, and the
approximated values of the latency (tm) and bandwidth (1 /tP) achieved by the
BLASC versus the underlying message-passing software for this machine. The
values for latency were obtained by timing the cost of a O-length message. The
saturation was obtained by increasing message length until bandwidth is saturated.
We used the same timing mechanism for both the BLASC and the underlying
message-passing library.

Table 1: Reference single node performance of BLAS and BLASC implementa-
tion on test-bed cluster

MFlops G71(ps) I/t@ (MB/s)

FMM Peak BLASC Native BLASC Native

1120 1400 170 130 10.8 11.0

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

8 Applications of High-Performance Computing in Engineering VII

3.1 Optimizing Level 2 and Level 3 BLAS

Optimizing BLAS is a standard job for “sequential” programmers. Nowadays,
thanks to both manufacturers and open source developers, architecture-optimized
implementation of BLAS were written for almost all processors commonly used
in COTS Beowulf clusters, such as Intel [5] and AMD[6]. Automated optimizers,
such as ATLAS [7] can also be used to minimize memory penalty involved in cache
hierarchy data transfer.

3.1.1 Performance
Generally speaking, optimization is based on a better use of new floating point
instruction sets built into the processors (MMX, 3DNOW !, SSE, Altivec, etc.) to
implement some level of simple vectorization. In addition to the reference Fortran

77 implementation, we have also tested Intel’s math kernel[5] and we reproduced
the work of the aggregate consortium [6] concerning the AMD Athlon processor.
Table 2 shows the flop rate achieved by the matrix-matrix multiply Level 3 BLAS
routine SGEMM/DGEMM (FMM) on a node versus its theoretical peak perfor-

mance.

Table 2: Performance of various BLAS implementations on the 16-node test-bed

cluster

MFlops

FMM Peak

n Aggregate SWAR Implementation 2694 1400

Since Athlon peak performance was only an estimation, it is not surprising to
see that it can be exceeded. On the standard i386 instruction set, there is no way to
perform more than a floating point operation per clock cycle: this is no longer the
case with Athlon extended instruction set, which potentially performs up to three
floating point operations per cycle. Once again, it must be pointed out that this
speed-up cannot be achieved on the Beowulf cluster in parallel mode because of
the relatively slow bandwidth, at least for affordable port-to-port interconnections.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

Applications of High-Performance Computing in Engineering VII 9

3.2 Optimizing BLASC Communication Subprograms

The second alternative for optimization is communications, on both the hardware
and the software sides. Our previous analysis of the two-dimensional block-cyclic
distribution used extensively through ScaLAPACK has lead us to physically build
the versatile and inexpensive 2D Cartesian topology shown in Figure 3.

Figure 3: Schematic interconnect for a 16-node Cartesian topology

On this figure, each computational node (here, we assumed one process per node
to simplify) is connected to the others nodes through three interfaces: a global

one giving access to every other node (via a switch labeled 2D) and two “local”
ones giving only access to row and column neighbors (switch ID). There is an
order of magnitude between these local ID switches and the global 2D one. We
must insist that this setting is quite affordable, requiring only the interconnection
supplementary material described in Table 3.

Table 3: Networking material cost for a 16-node COST Beowulf cluster optimized
with a Cartesian grid topology

Quantity Description Unitary Cost (USD) Total Cost

48 Fast Ethernet Card (DEC Tulip) 40 1920

8 Full Duplex 4-port switch 50 400

1 Full Duplex 16-port switch 1500 1500

I Total: II <4000$ I

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

10 Applications of High-Performance Computing in Engineering VII

Once installed, this topology is nothing but a physical realization of BLASC
conceptual connection patterns for all of the standard process grids it could use
for16processes orless:l x2,1x4,2 x2,2 x4,4 x4,1 x8,1 x16 andof
course their transposes. Moreover, every pair of neighbor processes has redundant
interconnecting paths, thus providing quicker and more reliable connections. Local
pairing using 4-port interconnects for an entire row or column (what is called a
scope in BLASC terminology) and direct message broadcasting are possible since
every message is encapsulated into its own BLASC context (closely related to MPI
communicators), preventing overlapping message universes from colliding.

Regarding software adaptation, two different approaches were used, giving sim-
ilar results in terms of performance speed-up: building a new abstract device into
MPI or using Linux Kernel 2.4 routing and QoS policies.

3.2.1 newp4 : a routing ADI interface
This approach, totally internal to MPICH 1.1, is based upon the Abstract Device
(ADI-2) to implement a small routing policy system on top of a p4 device. In
addition to the usual MP1.COMM_WORLDcommunicator, two other communicators
are created during initialization virtually connecting row and column neighbors.

Since real broadcast calls used by BLASC (MPI-Bcas t) were not implemented,
a bufferization was internally made via the ADI and data were flushed only when
buffer was full or when 1P addresses belonging to different switches were asked
for. With this approach, each process only sees one device that transparently sends
information where it belongs, improving network usage.

3.2.2 Linux Kernel 2.4 routine and QoS policies
This other approach is totally external to SC&APACK or its dependencies, and
is also a lot quicker to install. The whole idea is that you do not need to tell

MPUBLASC anything about interfaces as long as packets getting out of a node can
be correctly re-routed. Basically, we use IP-tables for intercepting all out-bound
packets to the cluster-wide interface and re-sending them, whenever possible, to
another interface compatible with the source and destination addresses. A similar
procedure is used for incoming packets.

3.2.3 Performance
Setting efficient data distribution for specific algorithms (by reshaping the PC x PT

dimensions of the process grid) is the key to real performance enhancements in
ScaLAPACK. In fact, the algorithms currently implemented in ScaLAPACK fall
into two main categories.

In the first category, a block of rows or columns is replicated in all process rows
or columns, in such a way that the sources of successive broadcasts are them-
selves owner of orderly fashioned blocks of data contained in original matrices.
The QR factorization and the right looking variant of the LU factorization are typ-
ical examples of such algorithms. Therefore, the LU, QR, and QL factorization

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

Applications of High-Performance Computing in Engineering VII ~~

perform better for “flat” process grids (PC >> Pr). These factorization perform a

reduction operation for each matrix column (pivoting in the LU factorization for
instance). After this reduction has been performed, it is important to update the
next block of columns as fast as possible. This update is done by broadcasting this
block, making our Cartesian topology especially useful, since columns and rows
processes are always physically connected to direct links suitable for broadcast.

The second group of algorithms is characterized by the physical transposition of

a group of rows and/or columns at each step, since it minimizes average data com-
munication. Square or near square grids are more adequate from a performance
point of view for these transposition operations. Examples of such algorithms
implemented in ScaLAPACK include the right-looking variant of the Cholesky
factorization or the matrix inversion algorithm. Our topology will also handle it.

As in [2], table 4 illustrates the speed of the ScaLAPACK driver routine PSGESV
for solving a square linear system of order N by LU factorization with partial row
pivoting of a real matrix. For all timings, native 32-bit floating-point arithmetics
was used, on Aggregate SWAR BLAS Implementation. Similarly, table 5 shows
results for a matrix-vector product y +- y + Az, where A is a square matrix of

order lV and z and y are vectors that are both distributed over a process column.

Table 4: Speed in MFlops of PSGESV for N x N matrices

Implementation Process Grid Block Size
Values of N

2000 5000 7500 10000

Reference 1X4 64 213 350 380

2x4 64 191 500 625 635

Cartesian 2D 1X4 64 404 611 627

2x4 64 415 716 976 1295

Table 5: Speed in MFlops of PSGEMV for N x N matrices

Implementation Process Grid Block Size
Values of N

2000 I 5000 I 75001 10000
I I 1 1 I 1 J

Reference 4x4 64 275 332 345 352
I 1 1 I 1 1

Cartesian 2D 4x4 64 384 I 600 I 851 1021 I

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

12 Applications of High-Performance Computing in Engineering VII

4 Conclusion

The performance of the scalable linear algebra package ScaLAPACK was shown to
be substantially enhanced after superimposing a low-cost Cartesian network topol-
ogy on a COTS cluster. This is done by implementing on the hardware level what
ScaLAPACK implicitly suggests from its software design. Moreover, the hardware
needed to substantially speedup this package is affordable compared to the over-
all cluster cost. Communications were managed either by defining a new abstract

device, or by using operating system’s routing interfaces. These software tuning
can be devised to be relatively transparent to the end user, and also quite straight-
forward to make.

The benefit of this approach is that the scientific community can significantly
increase their ability to solve large linear systems on COTS Beowulf clusters for
only a small added fee as much in term of money than labor.

Acknowledgments - This work has been carried out partly with the help of grants from the
Natural Science and Engineering Research Council of Canada. Funding was also provided
by the HPC program at Centre de recherche en calcul appliqu6 (CERCA).

References

[1] Becker, D.J, Sterling, T., Savarese, D., Dorband, J.E., Ranawak, U. A., &
Parker, C. V., “Beowulf a parallel workstation for scientific computation;’
Proc. International Conference on parallel processing, 1995.

[2] Blackford, L. S., Choi, J., Cleary, A,, D’Azevedo, E. Demmel, J., Dhillon, I,
Dongarra, J, Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
& Whaley, R.C, Scalapack Users’ Guide, Society for Industrial and Applied
Mathematics: Philadelphia, 1997.

[3] Dongarra, J., Van de Geijn, R., & Walker, D. “Scalability issues in the design
of a library for dense linear algebra,” Journal of Parallel and Distributed Com-
puting, 22, pp. 523-537, 1994.

[4] Hendrickson, B., & Womble,D., “The torus-wrap mapping for dense matrix
calculations on massively parallel computers,” Society for Industrial and

Applied Mathematics Journal or Scientific and Statistic Computing, 15,
pp. 1201-1226,1994.

[5] Intel Corporation, Intel Math Kernel Library, Reference Manual, United States
of America, 2001.

[6] Fisher, R.J., & Dietz, H. G., Compiling for SIMD Within a Register, The

Workshop on Programming Languages and Compilers for Parallel Comput-

ing (LCPC), 1998.

[7] Whaley, R.C, Dongarra, J.,Petitet, A., “Automated Empirical Optimization of

Software and the ATLAS Project;’ Parallel Computing, 27, pp 3-25,2001.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com Email witpress@witpress.com
Paper from: Applications of High Performance Computing in Engineering VII, CA Brebbia, P Melli & A Zanasi (Editors).
ISBN 1-85312-924-0

