Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

Exploiting parallelism in general purpose
optimization

G. Venter & B. Watson
Vanderplaats Research and Development, Inc.
Colorado Springs, CO, US4

Abstract

VisualDOC, a general purpose design optimization code that is commercially
available from Vanderplaats Research and Development, Inc. (VR&D), is used
as a test-bed for evaluating the efficiency of parallelizing current optimization
algorithms. The finite difference gradient calculations of VisualDOC are
implemented in parallel form and these changes are evaluated using a typical
aircraft wing example problem. VisualDOC provides three algorithms for
performing constrained nonlinear optimization and the investigation focuses on
the influence of the optimization algorithm and the number of design variables
on the efficiency of performing the cptimization in parallel. The need to
additionally parallelize the one-dimensional search calculations is also
investigated. = The Local Area Multiprocessor (LAM) system, originally
developed at Ohio State University, has been configured on VR&D workstations
to allow them to be used as a parallel processing computer, referred to as a
virtual parallel machine. This group of workstations consists of a combination
of UNIX and Windows NT workstations. The LAM system contains an
implementation of the MPI standard for message passing that allows for dynamic
load balancing.

1 Introduction

Despite many years of research, resulting in the availability of several general
purpose optimization programs, optimization has only realized limited success in
the industrial environment. There are many reasons for this lack of acceptance,
including (a) lack of user familiarity with optimization concepts, and (b)
immense computational resource requirements for general purpose optimization.

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

22 Applications of High-Performance Computers in Engineering VI

The first issue is due to the fact that optimization is rarely taught at the
undergraduate level, creating the need for user training, that companies are often
unwilling to invest in. The VisualDOC program (e.g., [1]), from VR&D, was
created to address this issue. It provides an intuitive graphical user interface,
guiding the user through the steps required to set up an optimization problem.
This environment allows engineers to apply optimization to real problems with
minimal training requirements. The high computational resource requirement of
general purpose optimization stems from the ‘“‘general purpose” nature of the
problem and is the focus of this paper.

Recognizing that many robust and efficient general purpose optimization
techniques are gradient-based, this paper addresses the computational resource
requirement of existing gradient-based optimization algorithms. In general,
gradient-based optimization algorithms reach an optimum design point by
moving from one design point to the next. This process of moving from one
design point to the next typically consists of calculating the gradient values of
the objective function and active constraint set to obtain a search direction,
followed by a one-dimensional search in that search direction. The one-
dimensional search determines how far to move in the search direction and
identifies the next design point where gradient calculations will be performed.
Because typical analysis packages do not generally provide gradients, most
general purpose optimizers employ finite difference gradient calculations to
obtain the gradients, and VisualDOC is no exception.

Engineers typically use tools that were developed for performing only a
single analysis. To perform optimization using these tools, a large number of
analyses are required, either to provide gradient information via finite difference
calculations, or to provide data for response surface or other non-gradient based
optimization methods. A typical industrial analysis can require many hours of
computer time. Given the time constraints that are placed on design engineers,
this makes many potential optimization problems impractical.

Parallel processing has the potential to reduce the time requirements such
that general purpose optimization becomes practical for a wide range of
industrial applications. The objective of this study is to develop techniques to
use existing optimization algorithms to gain maximum efficiency from
parallelization. Several previous studies have focused on the parallelization of
the gradient calculations, with moderate success (e.g., Rogers [2], Sikiotis [3],
El-Sayed [4] and Watson [5]).

When the number of design variables increases, the bulk of the
computational time required to complete the optimization is consumed by the
finite difference gradient calculations. A set of gradients is calculated at each
design iteration to determine a search direction that is used by the optimization
algorithm during the one-dimensional search. In VisualDOC, the default is to
use forward finite difference calculations, which requires as many analyses as
there are independent design variables for each set of finite difference
calculations. Since the analyses required during the finite difference calculations
are independent of each other, these calculations may be easily performed in
parallel. When the number of parallel processors is greater or equal to the

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

Applications of High-Performance Computers in Engineering VI 23

number of independent design variables, each set of finite difference calculations
may be performed in the same time it takes to complete a single analysis.

An aspect of optimization that, to the authors’ knowledge, has never been
fully investigated or exploited for parallel processing is the one-dimensional
search calculations. Most researchers have ignored parallelizing the one-
dimensional search calculations since it is more challenging than parallelizing
the finite difference gradient calculations, because the one-dimensional search is
inherently a sequential process. The present paper will investigate the need to
parallelize the one-dimensional search calculations in current optimization
algorithms.

The freely available LAM system, developed by Ohio State University, is a
set of programs and libraries that allows a cluster of workstations connected with
a local area network to be used as a parallel processing computer. LAM contains
an implementation of the MPI standard for message passing that allows for
dynamic load balancing. The LAM system was used to develop and test a
parallel version of VisualDOC using existing UNIX and Windows NT
workstations available at VR&D.

2 Parallelism in the optimization process

The computational time of a gradient-based general purpose optimization
algorithm may be divided into three main parts:

Analyses required for gradients
Analyses required for one-dimensional search
Other optimization computations

For problems with moderate numbers of design variables, the time to complete
the analyses, both for gradient and one-dimensional search calculations,
dominates the total solution time. Additionally, the number of one-dimensional
search calculations is fairly independent of the number of design variables.
However, the number of analyses required to perform the finite difference
gradient calculations increases with the number of design variables and will
dominate the total solution time for any problem with more than just a few
design variables.

A typical commercial analysis can take many hours and it is currently
impractical to attempt optimization of this class of problems using more than a
small number of design variables. Parallel processing provides an opportunity to
reduce the total solution time, and make general purpose optimization practical
for large numbers of design variables.

3 Parallel implementation of VisualDOC

The present work will investigate the efficiency of parallelizing only the finite
difference gradient calculations and will make recommendations with respect to

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

24 Applications of High-Performance Computers in Engineering VI

parallelizing the one-dimensional search calculations. The finite difference
gradient calculations are independent of each other and are easily parallelized.

A function, F that depends on a single variable, x, may be used to introduce
finite difference gradient calculations. The gradient of F" with respect to x at the
point x; is defined as

dF(x) — lim F(x)-F(xy)

dx |, ™n x-xp

(1)

The gradient of F' with respect to x may be approximated at the point x;, by
perturbing x with a small value, A, as follows:

dF(x)| _ Flxg+h)=F(x))
dx IV_:",“ h '

The right hand side of Eqn. (2) is the forward finite difference formula for the
gradient of F’ with respect to x at x=x,. In the case where F'is a function of many
variables, the right hand side of Eqn. (2) is repeated for each variable, resulting
in a number of function evaluations that are independent of each other. It is thus
fairly easy to parallelize the finite difference gradient calculations, in which case
a number of processors equal to the number of design variables may be utilized.

VisualDOC performs a set of gradient calculations after each design cycle
where the optimization algorithm made progress towards the optimum solution
during the one-dimensional search. To perform the gradient calculations,
VisualDOC perturbs the design variables one at a time, and calls the analysis
module to perform the required analysis. This process was parallelized by
changing the analysis module within VisualDOC to accept a set of perturbed
design variables and perform the required analyses in parallel by distributing the
analyses to the available processors. The analysis module was parallelized using
a master-slave paradigm where the master process allocates the tasks to all
available slave processors (see e.g., Smith [6]). When a slave finishes its task, it
becomes available again, and can be allocated another task. This paradigm is
ideally suited to a heterogeneous parallel environment, such as a local area
network of workstations, because it is intrinsically dynamically load balanced.
That is, faster processors will be allocated more tasks. Also, this scheme
requires only minimal inter-processor communication. The design variable
values are sent to the slaves, and the response values are sent back to the master.
A single slave process running on the same processor as the master process
performs all the remaining analyses required during the optimization.

(2)

4 Example problem

To test the effectiveness of performing the finite difference gradient calculations
in parallel, structural optimization of a typical aircraft wing was considered as an
example problem. The wing structure considered is constructed of aluminum
and has a length of 70 ff. A finite element model of the wing was constructed to
evaluate the required stresses, displacements and frequency constraints. The
finite element analyses required during the optimization process were performed

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

Applications of High-Performance Computers in Engineering VI 25

using GENESIS (e.g., [7]). The finite element model consisted of 2,400 two-
dimensional shell elements (CQUAD4), 600 one-dimensional truss elements
(CROD) and has a total of 1,917 nodes. This finite element model is shown
graphically in Fig. 1.

Figure 1: Finite element model for the wing example problem.

Three load conditions, typical of an aircraft wing, are considered during the
optimization as follows:

® Load case 1 (Static): Normal lift and engine weight
Load case 2 (Static): Landing, half lift and engine weight
® Load case 3 (Frequency): Fundamental frequency

The optimization problem is then defined as minimizing the mass of the wing
with the three load cases applied and subject to stress. displacement and natural
frequency constraints, resulting in a total of 21,648 constraints. The problem has
a total of twenty four design variables, with each design variable representing the
thickness value of a group of shell elements. All design variables have a lower
bound of 0:02 in, an upper bound of 1.00 in and an initial value of 0.2 in.

The GENESIS software was used to perform the finite element analyses
(i.e., function evaluations) required during the VisualDOC optimization.
However, although GENESIS provides finite element analysis capabilities, it is
primarily a powerful structural optimization tool. To obtain a baseline optimum
design for validating our VisualDOC results, the wing structure was optimized
using GENESIS. GENESIS found an optimum design that satisfied all the
constraints with a mass of 9,553.76 /b.

5 Results

The VisualDOC wing optimization was performed on a heterogeneous cluster of
six workstations consisting of three SUN workstations, two SGI workstations
and a Windows NT workstation. These machines were linked into a virtual
parallel machine using the MPI message passing protocol implemented in the
LAM software. All the workstations, except for two of the SUN workstations,
had different configurations and the parallel runs were distributed using dynamic
load balancing. Two cases were considered, with the first case having twelve

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

26 Applications of High-Performance Computers in Engineering VI

design variables and the second case twenty four design variables. For each
case, the three optimization algorithms of VisualDOC were considered resulting
in a total of twelve optimizations. The three optimization algorithms considered
were (1) the modified method of feasible directions (MMFD), (2) sequential
linear programming (SLP), and (3) sequential quadratic programming (SQP).

For each of the twelve optimization runs the total number of analyses, the
total number of analyses performed in parallel and the total time to complete the
optimization were recorded. Additionally, the total time to complete each
optimization if performed in a serial manner on the slowest and fastest
workstations respectively were estimated. These times were estimated by
multiplying the average time to complete five analyses by the total number of
analyses required to complete each optimization. This information was used to
evaluate the efficiency of performing the optimization in parallel.

5.1 Case 1: Twelve design variables

As mentioned in the example problem description, the original example problem
has a total of twenty four design variables. For the twelve design variable case
considered here, the first twelve design variables were set to their initial values,
while the remaining design variables were kept at their optimum values as
obtained from the baseline optimum obtained from GENESIS (see Section 4).
Changing only twelve of the original twenty four design variables from their
baseline optimum values ensured that the optimum of the VisualDOC twelve
design variable case would correspond to the GENESIS twenty four design
variable case. By comparing the optimum results we ensured that all three of the
VisualDOC optimization algorithms did converge. The optimum results
obtained from the three VisualDOC optimization algorithms are summarized in
Table 1 and the timing information in Table 2.

Table 1: Twelve design variable case results.

MMFD SLP SQP
9,541.41 9,552.60 9,552.99
Mass (/5] (-0.13%) (-0.01%) (-0.01%)
Design Cycles 8 18 11
Total Analyses 141 239 164
Parallel Analyses 84 216 132

(Values in parentheses are the present difference with respect to the optimum
mass found by GENESIS)

Table 1 demonstrates that all three VisualDOC optimization algorithms
resulted in well converged optimum solutions that correlates well with the
optimum found by GENESIS. Comparing the results, it is clear that the MMFD
algorithm required a larger percentage of one-dimensional search calculations
with respect to the total number of analyses (40%) compared to 10% for the SLP
and 20% for the SQP algorithms. Since the one-dimensional search calculations

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

Applications of High-Performance Computers in Engineering VI 27

were not parallelized, the SLP and SQP algorithms thus resulted in more
efficient parallel algorithms as compared to the MMFD algorithm.

Table 2: Total time to complete the twelve design variable case.

MMFD SLP SQp

Parallel Time [s] 7,479 6,753 5,964
- 31,020 52,580 36,080

Slowest Serial Time [s] 4.15) (7.79) (6.05)
o 12,267 20,793 14,268

Fastest Serial Time [s] (1.64) (3.08) (239)

(Values in parentheses are the speedup factor between the parallel and serial
optimizations)

This higher efficiency is clearly illustrated by the total time to complete the
respective optimizations in parallel and the speedup factors as summarized in
Table 2. The SQP algorithm required 16% more analyses but took 20% less
time to complete as compared to the MMFD algorithm, while the SLP algorithm
required 70% more analyses but took 10% less time as compared to the MMFD
algorithm. Additionally, the SLP algorithm required 46% more analyses than
the SQP algorithm, but was only 13% slower. Finally, the SLP algorithm had
the highest speedup factors, while the MMFD algorithm had the lowest speedup
factors.

Apart from the percentage of total analyses required to complete the one-
dimensional search calculations, one should also consider the average number of
one-dimensional search calculations required for each design cycle. If the one-
dimensional search calculations could be performed in parallel, this ratio would
ideally be equal to 1.0. For the MMFD algorithm this ratio is 7.1, for SLP it is
1.3 and for SQP itis 2.9. It is thus clear that the MMFD algorithm would benefit
the most from parallelizing the one-dimensional search calculations while the
impact on the SLP algorithm would be minimal.

The higher parallel efficiency of the SLP and SQP algorithms can be
explained by the fact that the linear (in the case of SLP) and quadratic (in the
case of SQP) sub-problems constructed during the optimization are used in the
one-dimensional search. The one-dimensional search calculations are mostly
based on linear or quadratic approximations of the actual function values at the
current design point and a smaller number of actual function evaluations are
required during the one-dimensional search. However, note that when the
optimizations are performed in a serial manner, the MMFD algorithm is the most
efficient since it requires the smallest number of total analyses.

The number of parallel analyses distributed to each node in the virtual
parallel machine is shown graphically in Fig. 2. Figure 2 clearly illustrates the
dynamic load balancing property of the present parallel implementation where
the fastest processors (nodes 2 and 5) performed the largest number of analyses
while the slowest processors (nodes 3 and 6) performed the smallest number of
analyses.

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

28 Applications of High-Performance Computers in Engineering VI

o
o

oMMFD
oSLP
oSsapP

M I

5
(=}

N
o

w
o

N
oS

o

Total Number of Analyses

Wl

Node 1 Node2 Node3 Noded4 Node5 Node6

(=]

Processor Identification

Figure 2: Finite element model for the wing example problem.

5.2 Case 2: Twenty four design variables

For the twenty four design variable case all the design variables of the original
example problem were considered and set to their original values to start the
different optimizations. Again, the original example problem was used to ensure
that each optimization algorithm did indeed converge to the optimum design
point. The results obtained for the twenty four design variable case are
summarized in Table 3 and the timing information in Table 4.

Table 3: Twenty four design variable case results.

MMFD SLP SQpP
. 9,548.36 9,567.28 9,663.80
Objective [/P] (-0.06) (0.14%) (1.15%)
Time [s] 12,300 8,754 9,476
Design Cycles 9 13 12
Total Analyses 255 329 321
Parallel Analyses 168 312 288

As for the twelve design variable case, the twenty four design variable case
had excellent correlation with the baseline optimum. Again, the MMFD
algorithm had the most one-dimensional search calculations (34%), compared to
the SLP (5%) and SQP (10%) algorithms. However, the percentage of total
analyses required for the one-dimensional search calculations reduced when the
number of design variables was increased. Although the percentage of total
analyses required for the one-dimensional search calculations reduced, the
average number of one-dimensional search calculations per design cycle
remained almost constant.

For the twenty four design variable case the SQP algorithm required 26%
more analyses but took 23% less time to complete as compared to the MMFD
algorithm, while the SLP algorithm required 29% more analyses but took 29%
less time as compared to the MMFD algorithm. The SLP algorithm required 2%

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

Applications of High-Performance Computers in Engineering VI 29

Table 4: Total time to complete the twenty four design variable case.

MMFD SLP SQP

Parallel Time [s] 12,300 8,754 9,476
Slowest Serial Time |s] 5(2’;2? 7(?32;()) Zgi‘é?
Fastest Serial Time [s] z(fégf 2(2%? %Zgg

(Values in parentheses are the speedup factor between the parallel and serial
optimizations)

more analyses than the SQP algorithm, but was 13% faster. Again, the SLP
algorithm had the highest speedup factor, while the MMFD algorithm had the
lowest speedup factor. The higher parallel efficiency of the optimization
algorithms for a larger number of design variables is illustrated by the higher
speedup factors for the twenty four design variable case as compared to those of
the twelve design variable case.

6 Conclusions

The goal of the present paper was to investigate the influence of the optimization
algorithm and the number of design variables on the efficiency of parallel
optimization using existing gradient-based optimization algorithms. In this
study only the finite difference gradient calculations were parallelized, but the
influence of parallelizing the one-dimensional search calculations was also
addressed.

For the present example problem it was found that although the MMFD
algorithm was the most efficient algorithm when running the optimizations in
series, it resulted in the least efficient parallel algorithm. The MMFD algorithm
could be greatly improved by performing the one-dimensional search
calculations in parallel. The SLP algorithm were the most efficiently
parallelized and parallelizing the one-dimensional search calculations for the
SLP algorithm would have a minimal influence on the parallel efficiency. The
parallel SQP algorithm, although less efficient than the parallel SLP algorithm,
was much more efficient than the parallel MMFD algorithm.

Additionally, it was found that as the number of design variables increased,
the percentage of the total number of analyses required to complete the one-
dimensional search calculations was reduced and the parallel efficiency was
increased. For problems with large numbers of design variables, as is typical of
problems that would be solved in parallel, the inefficiency associated with
performing the one-dimensional search calculations in series would be minimal
for the SLP and SQP algorithms.

Applications of High Performance Computing in Engineering VI, C.A. Brebbia, M. Ingber & H. Power (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-810-4

30 Applications of High-Performance Computers in Engineering VI

References

[1] VisualDOC Design Optimization Software, Version 1.0 Reference Manual,
Vanderplaats Research and Development, Inc., Colorado Springs, CO, 1998.

[2] Rogers, J.L., Young, K.C. and Barthelemy, J.M., “Distributed Computer
System Enhances Productivity for SRB Joint Optimization”, 28th
ATAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials
Conference, Monterey, CA, pp. 596-600, April 6-8, 1987.

[3] Sikiotis, E.S. and Saouma, V.E., “Parallel Structural Optimization on a
Network of Computer Workstations”, Computers & Structures, Vol. 29,
No. 1 pp. 141-150, 1988.

[4] El-Sayed, M.E.M. and Hsiung, C.K., “Design Optimization with Parallel
Sensitivity Analysis on the CRAY X-MP”, Structural Optimization, Vol. 3,
pp. 247-251, 1991.

[5] Watson, B.C. and Noor, A K., “Sensitivity Analysis for Large-Deflection and
Postbuckling Responses on Distributed-Memory Computers”, Computer
Methods in Applied Mechanics and Engineering, Vol. 129, pp. 393-409,
1996.

[6] Smith, S.L., and Schnabel, R.B., “Centralized and Distributed Dynamic
Scheduling for Adaptive, Parallel Algorithms”, Unstructured Scientific
Computation on Scalable Multiprocessors, eds. P. Mehrotra, J. Saltz, and R.
Voigt, MIT Press, Cambridge, MA, pp.301-322, 1992.

[7] GENESIS Structural. Optimization Software, Version 5.0 User Manual,
VMA Engineering, Colorado Springs, CO, 1998.

