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Abstract

A computational method is developed to solve the coupled fluid-structure inter-
action problem, where the viscous incompressible fluid and a rigid body-spring
system interact with each other. In order to incorporate the effect of the moving sur-
face of the rigid body, the arbitrary Lagrangian-Eulerian formulation is employed
as the basis of the finite element spatial discretization. The predictor-corrector
method is then used for the time integration of the equations of the motion.

1 Introdution

Many problems cannot be treated effectively with Lagrangian meshes. When the
material is severely deformed, Lagrangian elements become similarly distorted
since they deform with the material. The approximation accuracy of the elements
then deteriorates, particularly for higher order elements. In some problems, Lagran-
gian methods are totally inappropriate. For example, in fluid mechanics with high
velocity flows, interest is usually focused on a particular spatial subdomain, such
as the domain around an airfoil. Similarly, the modeling of processes such as extru-
sion involve fixed spatial domains through which the material flows. These types
of problems are more suited to Eulerian elements. In Eulerian finite elements, the
elements are fixed in space and material convects through the elements. Eulerian
finite elements thus undergo no distorsion due to material motion.

Unfortunately, the treatment of moving boundaries and interfaces is difficult
with Eulerian elements. Therefore, hybrid techniques, which combine the advan-
tages of Eulerian and Lagrangian methods, have been developed. These are called
ALE methods: Arbitrary Lagrangian Eulerian. As the name suggests, ALE descrip-
tions are arbitrary combinations of the Lagrangian and Eulerian descriptions. The
word arbitrary here refers to the fact that thecombinations are specified by the user
through the selection of a mesh motion.



E';ﬁ Transactions on the Built Environment vol 71, © 2004 WIT Press, www.witpress.com, ISSN 1743-3509

434 Fluid Structure Interaction Il

2 Material motion and mesh displacement, velocity and
acceleration

In ALE method, both the motions of the mesh and the material must be described.
The motion of the material is described by

y = ®(z,1), M

where x are the material coordinates. The function ®(«,t) maps the body from
the initial configuration €y to the current or spatial configuration ) (material
motion). Now we consider another reference domain {2 (referential domain or the
ALE domain). The initial values of the position of particles are denoted by x, so

x = &(x,0). )

The coordinates x are called the referential or ALE coordinates. In most cases
&(z,0) = z, so x(x,0) = x. The referential domain ) is used to describe the
motion of the mesh independent of the motion of the material. In the implementa-
tion, the domain € is used to construct the initial mesh.

The motion of the mesh is described by

y = 2(x,1). ©)
This map & plays a crucial role in the ALE finite formulation. Points ) in the ALE
domain £} are mapped to points ¢ in the spatial domain {2, via this map.

“As is apparent from egs. (1) and (3), we can relate the ALE coordinates to the
material coordinate by a composition of function. This relation has form

x =9"y,t) = 7 H(&(x,1),t) = ¥(z,1). )

Spatial Domain Q
.y

L5

*X
Reference Domain

Material Domain €2

Figure 1: Maps between Lagrangian, Eulerian and ALE domains
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We will now define the displacement, velocity and acceleration of the mesh
motion. The mesh velocity 4 is defined by

a(x,t) =y - x = ®(x,t) - x. (5)

Note the similarly of the above definition to the definition of material displace-
ment, which is u = y — x (the material coordinate has been replaced by the ALE
referential coordinate). The mesh velocity is defined analogously to the material
velocity and it holds

. o%(x,t) _ 8%
o0 1) = 22000

ot a5l ©)

X

where the ALE coordinate x is fixed. And finally the mesh acceleration is given
by

(N

6= 906t _ 82ﬁ(x,t)\

8t o2

Neither the mesh acceleration nor the mesh velocity have any physical meaning
in an ALE mesh which is not Lagrangian. When the mesh is Lagrangian, they
correspond to the material velocity and acceleration.

3 Material time derivative and convective velocity

In ALE descriptions, fields are usually expressed as functions of ALE coordinates
x and time . The material derivative must then be obtained by the chain rule,
similar to the process used in an Eulerian description. Consider a specific function
f{x,t). Using the chain rule gives

af(x’t) + 8f(Xa t) alllz(m’ t) — _a_.i
ot Ox; ot ot

of

+
X

Df . _ _
E :f(X>t) = - Wi, )

where w; is the referential particle velocity and is defined as

_ 9%, (x,t) _ Oxi

Wi ot ot ©

X
In the praxis the ALE field variables are often treated as functions of the material
coordinates  and time ¢. Hence, it is convenient to develop expressions for the

material time derivative in terms of the spatial gradient. For the material velocity

holds
0%i(z,t) _ . Oui Oxs

vy = v; + .
¢ ot 77 By Ot
Now we can define the convective velocity ¢ as the diference between the material
and mesh velocities. It can be shown, that

(10)

f3 at
¢ = v —; = Wbt (11)

Ox;
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This relationship between the convective velocity ¢, material velocity v, mesh
velocity © and the referential velocity w will be used frequently in the ALE for-
mulation.

Because of egs. (8), (9) and (11) we can write expression for the material time
derivative with a spatial gradient

Df _ 9f 0f dy; of| | of
AN T T ) R 12
Dt~ ot| Tay ot ot), " oy~ a2

4 Problem statement

Figure 2 shows a schematic desription of the interaction problem, where 2(t) is
the domain occupied by the moving rigid body (S is a center of gravity), Qr(t)
is the moving spatial domain upon which the fluid motion is described. I'g(t)
is the interface between Qg (¢) and Qp(t). As the rigid body 2p{t) changes its
position, the interface I'p(t) moves accordingly. Providing that we can specify
in some way the distribution of the mesh velocity 9;(z,t) in Qp(¢) in accordance
with the motion of Qp(t), we can employ the following ALE description of the
Navier-Stokes and continuity equations of the fluid motion

ov; N Op 0 [ 0Ov;
i~ Ui =2 o il 13
0 T om0 g = 5 T hEg (ax,) +of (13
Ov; .
6; =0, inQp() (14)

‘where v; is the the material velocity vector of the fluid, (v; — ;) is the convective
velocity (0; — mesh velocity), g is the density, z; are Euler’s (spatial) coordinates,
p is the pressure, f; is the specific body force vector,  is the dynamic viscosity of
the fluid.

Figure 2: Scheme of the problem domain
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Figure 3: Displacement and forces on the body

The Dirichlet a Neumann boundary conditions
Vi =gi, On FU; O; = T3y = hi, onl,. (15)
Boundary conditions for the mesh velocity

9 =0, onTyUT,; & =v2 onTp(t). (16)

S The equation of motion of the rigid body

We consider a general planar motion of a single rigid body (3 DOFs), of which
motion is described by three displacement components defined at the center of
gravity S

a=la @ o, a7
In this case the equations of motion of the rigid body are written as
M{(t) + Bq(t) + Kq(t) = fg(1), (18)

where M, B and K are the mass matrix, the damping matrix and the stiffness
matrix, the vector f g contains resultants of the surface traction.

6 Spatial discretization

Finite element discretization over the moving spatial domain of the fluid Qg (¢)
leads to the following equations

Ca+Dv—-93)v-Gp=f and GTv=0, (19)
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These equations can be represented as
cee Caﬂ c a®

che (BB (B~ al |+
cre 8 v a”

D D por [ v G* :fa
+ | DpPfe pPB DB P — leld p= fB ,
D DY  pv L v | G P
Moo ]
[T & 7 ]|+ | =0 @0)
e

where matrices and vectors were divided into three parts: ®-part is associated with
Qr(t) or Ty, #-part with boundary T'yy and 7-part with ' (t). The overbar (7)
denotes prescribed values.

Relations between the rigid-body surface I'p(t) variables and the body free-
doms are given by compatibility conditions

v’ =TTq, a"=TT§+ Ay 1))

and equilibrium condition
fe+Tf =o. (22)

The transformation matrices T and A is derived from geometrical relations between
the center of gravity S of the rigid body and the nodal coordinates of each node on
I'p ( t) .
The mesh velocity vector © has to satisfy the boundary conditions
9=v"=TT¢, onlp(t), ©=0, onl,UTy, (23)

and the mesh velocity between these two boundaries is given by simple linear
function.

7 Derivation of the solution procedure
To eliminate the nodal components on the rigid body surface I'g(¢) we can use

compatibility conditions (21) and also we can remove the second row from (20),
we obtain

+ -
c'x cv TT('j + Ap? D DV TT(j

G* jsa Caﬁ _ Daﬁ ~
HSERE
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Because of equilibrium condition (22), we can obtain f g by expressing of force
7 from second row of (24). The equation (18) of motion of the rigid body can be
then written as

a
M*G+Bg+Kq=-T [ ce ¢t e ] af |+
Ap?
v
+ [ D D'yﬁ D7 :l &b _G’Yp , (25
’U’Y
where
M* =M +TC"TT, (26)

8 The predictor-multicorrector method

The time integration algorithm to solve first row of (24) and (25) is based on the
predictor-multicorrector method. The solution procedure using this algorithm is
summarised as follows for one step integration fromt = ¢, t0t = t, 41 = t,+ AL
Firts phase: predictor (i = 0)

apl) =0,
[Auid] vﬁgﬂ = 0% + At(1 — v)a?, 27
pa(':—)Fl = Pn-
ierZ-){-l = Oa
[rigid body] § 4} = g, + At(1 = 1), (28)

a¥, = g, + At + LA - 26)d,,.

Second phase: solution (0 < i < T —1)
The residuals of the first row (24) and (25) at the i-th stage of approximation at
time £,41 are written respectively as
(@)

o

a
) _ (%)
Ra(l) — f"‘ _ [ coe CaB ceY } &B _
TT§+ Ap®
o v® O]
- [ Do DaB DY ] ,(—}B +Ga(i)p(1)7 29)

T4
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(@)

@

a
. o : L @)
r® = M OGO _BgD_ kg —T® [ ce ot o ] as +
Ap?
o 1@
v
[©) _ ()
+ [ D™ D" pm } »° —epD |, @o
T4

Now we evaluate the acceleration increments and the pressure increment in order
to update the correctors as follows:

Y Aa® — @D Ap® = &*Y pa) = R*D,  (31)
MO AGH TOGOAP® = Fr¥ag® = pO) (32)
where C*® denotes the lumped counterpart of C*%, and
MY = M* + AtyB + (A)?8K. (33)
The increments Aa®(®) and AG® can be then expressed as
Aa*®D = Ag**®) 4 &I G AP (34)
AGD = AGO + MO OGO AR, (35)

The remaining and final problem is the determination of pressure increment Ap(itD),
‘We can obtain it as a solution of

_ , v 4 yAtAa®*®
POApE+H) = _ [ a7 ot T ](’) PL
T . )
TO (¢ + 'yAtAt'j*(z))
(36)
where
PO = 4 AtGED & 0T L A O T 0T Ol g (37)

Third phase: corrector (0 <¢ <7 —1)

i) = 6l + Aas),
[fuid] ¢ 2 = 2@ 4+ 4, AtAG*D), (38)
Pt = pl, + Ap®.
&) =+ 800,
rigid body] ¢ ¢UT = 0, +yAtAg®, (39)

alit) = a0 + Ban2agh.

In the above, both the second phase and the third phase are integrated I times
(I > 2). The parameters -, v and 3 are governing the algorithmic damping and
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accuracy. Due to the stability condition, the following conditions are required for
these parametersy, > 1,y > 1 8> L.

9 Numerical results

=
| T

Figure 4: Original mesh Figure 5: Mesh in the motion

Diskiverion of L pressues Casitioulion of eV, mesh veiozly componeet

Figure 6: Distribution of the pressure Figure 7: Mesh velocity — v, distrib.

Chstnbtion of s ¥, S velocity component Distidion of the V, b weiostsy compooest

Figure 8: Fluid velocity — v, distrib. Figure 9: Fluid velocity — vy, distrib.
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10 Conclusion

We have created a computional model of free vibrations of a single circular cylin-
der in a viscous fluid, which fills a circular domain (see fig. 4). The motion of the
cylinder has prescribed one degree of freedom in direction of the axis . We have
treated an axial-symetrical case, without spring damping.

On the fig. 5 is shown a deformed mesh in the motion. The rest pictures show
the distribution of the fluid velocity (fig. 8, 9) and the pressure (fig. 6) and the
distribution of the mesh velocity (fig. 7). They are caught at the same moment as
fig. 5, when the cylinder goes back in direction —z.

We want later to add degree of freedom in direction of the axis y and the rota-
tional degree of freedom. And finally we want to compute the damping for various
kind of fluid environments in the future.
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