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ABSTRACT 
Energy use in the urban residential sector corresponds directly to operation of energy consuming 
devices. For instance, space-heating is a substantial element of residential energy consumption in the 
UK, but it is as much tied to occupant preferences and timing of their presence in a home, as it is to the 
physical characteristics of the dwelling. Timing, duration, and in-use efficiency of residential energy 
consumption are essential for increasing the utilization of district energy systems and demand-side 
management. The ongoing IEA-EBC Annex 66 and our own recent work attests that there is a need to 
develop new methods to represent occupant presence and energy consuming activities in energy 
demand modelling. This is as much a multi-scale simulation issue, as it is a computational challenge. 
This paper presents a proof-of-concept methodology of estimating thermal energy demand on the urban 
scale by introducing occupancy models to high resolution bottom-up energy models. A synthetic 
population is created from census data and the occupancy of every citizen is modelled using a time 
heterogeneous Markov chain which is calibrated using time use survey data. The methodology is 
applied to a case study where the thermal energy demand is found to be varying up to 50% in different 
locations at certain times of the week. Regions with less diverse energy demand and thermal power 
patterns can be identified and discriminated against those with more diversity in the demand. 
Keywords: residential building occupancy, building energy model, agent-based model, population 
synthesis, micro-simulation. 

1  INTRODUCTION 
Accounting for 34% of global energy end-use, the building sector is the largest energy sink 
and a major contributor to global CO2 emissions [1]. Three quarters of this amount are 
accountable for space heating and cooling purposes. When trying to reduce this energy 
impact, understanding the energy demand originating in the building sector and its drivers is 
crucial. With more than half of the global population living in cities and with on-going 
urbanisation [2], urban built environments are becoming more important in this regard. This 
is even more so true when looking at America or Europe where the urban population exceeds 
70% of the total population already today [2]. Estimations of energy demand for space 
heating are valuable during the design phase of urban built environment and its energy supply 
infrastructure, but also for effective retrofitting actions and incremental performance 
evaluations. In particular, the task of designing efficient energy supply systems asks for a 
high temporal resolution of the estimation [3]. The built infrastructure and other factors 
impacting energy demand for space heating are diversely distributed in urban environments 
and hence analyses have recently been done on a high spatial resolution as well [4]–[6]. 
     While thermodynamic models of buildings are well understood and assumed to achieve 
good results, simulated energy demand for space heating in urban environments deviate 
largely from measured data which is often accounted to micro-climate effects [7], [8] and to 
the impact of occupants [9]–[11]. “Buildings don't use energy: people do” [11] and hence the 
energy usage in a building can be accounted directly or indirectly to the way people use 
buildings. In residential buildings, people's impact on space heating demands stems mostly 
from the way people control the heating, ventilation, and air conditioning (HVAC) systems, 
the way people actively ventilate their buildings through window and door opening, the way 
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people shade their rooms through blinds and curtains, the way people functionally divide 
their residential homes, and people's occupancy and activities performed at home which 
attribute in the form of heat gains [12]. Given the complex nature of human behaviour a 
comprehensive understanding of the driving forces, relationships, and feedbacks is difficult. 
Several factors like awareness [11], socio-economic situations [13] and rebound effects [14], 
are discussed in the literature. Given the trend towards zero-energy buildings in which 
thermal losses from the building fabric are significantly reduced, the impact of occupants on 
energy demand is relatively increasing [11]. This trend emphasises the importance of 
quantifying the influence of occupants on energy consumption. On the city scale, former 
work includes high resolution energy models without explicit influence of occupancy [5], 
[15], [16], and models including people behaviour but only in aggregated form on lower 
spatial resolution [17]. 
     The behaviour of occupants in energy simulation is typically represented through several 
sub-models. The foundation to most of them lies in determining time periods when the 
building is occupied [18]–[20]; sometimes even disaggregated into zones of the building [21]. 
On top of those, more detailed activity models [19], window opening models [22], and 
HVAC control models [23], are placed. Behaviour models are typically differentiated 
between deterministic and probabilistic types. Deterministic models assume a direct causal 
link between a driver of a certain behaviour and the actual derived action. While different 
methods exist, these types of models are based on rational decision making. Probabilistic 
models in contrast are based on likelihoods of different actions. The data source for 
occupancy and activity models in many cases is the so-called time use survey (TUS) data 
sets for which a standardising research centre exists [24]. 
     This paper reports the progress of on-going work of introducing people occupancy models 
to high resolution bottom-up city models for space heating. Energy demand is driven by the 
occupancy of people in their households which itself is modelled through a time-
heterogeneous Markov chain based on TUS data. Citizens are clustered through features of 
themselves and of the households they live in. A statistically viable urban population is 
formed through population synthesis. The model allows analyses of spatio-temporal patterns 
of energy use for space heating across a given district. It is implemented as an open-source 
agent-based model [25], which allows easy integration of other bottom-up effects impacting 
energy demand for space heating like people movement, people interactions, activity models, 
and urban microclimates, other energy uses like water heating and electricity, other 
environmental impacts e.g. on-air quality, or the supply side of building energy. 

2  METHODOLOGY 

2.1  Conceptual model 

The general urban energy system as applied in this study consists of three distinct entities: 
citizens, HVAC controls, and dwellings whose models will be described in detail in the 
following sub sections. A dwelling forms a home for one to ݊ citizens and incorporates 
exactly one HVAC control system. Fig. 1 shows a flow-chart of the model. The model is 
time-step based where in each time step ݇ , each entity updates its state: first all citizens update 
their occupancy, i.e. determine whether they are at home or not. Second, the HVAC control 
system of each dwelling updates its heating set point, taking into account the occupancy of 
the dwelling. Lastly, each dwelling updates its indoor temperature and the thermal power 
needed for reaching it. An agent-based implementation of this conceptual model is available 
online and published under an open-source license [25]. 
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Figure 1: Flow chart of a single time step. 

2.2  Heating system control model 

The heating set point ߠ௦௘௧,௭ for a heating zone ݖ can be understood as a function of ௭ܲ, the set 
of people inside the heating zone or related to it; ܮ௉೥ and ܣ௉೥, the locations and activities of 
those people; and ܤ௉೥, the heating behaviour which itself is influenced by many -- often 
unknown -- aspects like the comfort zone, awareness, socio-economic situation, and usage 
patterns of ௭ܲ. 
     For the simulation model of the heating system controls applied in this study, the 
following simplifications are made compared to the general model as defined above: 

 zones are entire dwellings; 
 time is discrete; 
 location is equal to presence, i.e. we do not incorporate indoor positions; 
 heating behaviour is based on three occupancy modes as described below. 

The smallest unit considered is a dwelling ݀, by which we mean the fraction of a building 
that has a distinct energy meter and is occupied by a single household. Each dwelling ݀ is of 
the set ܦ, i.e. of the urban residential building stock. ௞ܲ

ௗ is defined as a subset of the entire 
urban population ܲ comprising of all people that occupy dwelling ݀ at time ݇. Given these 
definitions, the heating set point for dwelling ݀ at time ݇ ∈  :is defined as ܭ
 

௦௘௧,௞ߠ
ௗ ൌ ൞

௦௘௧,௔௕௦௘௡௧ߠ
ௗ , if	 ௞ܲ

ௗ ൌ ⌀

௦௘௧,௔௖௧௜௩௘ߠ
ௗ , if	൛݌ ∈ ௞ܲ

ௗหp	is	activeൟ ് ⌀

௦௘௧,௣௔௦௦௜௩௘ߠ
ௗ , otherwise

                         (1) 

 
In this model, there are three distinct heating set points between which the control system 
toggles depending on occupancy. It shall be noted that assuming a desired comfort level 
defined by the set point temperatures ߠ௦௘௧,௔௕௦௘௡௧

ௗ ൑ ௦௘௧,௣௔௦௦௜௩௘ߠ
ௗ ൑ ௦௘௧,௔௖௧௜௩௘ߠ

ௗ  this controller is 
close to optimal in terms of energy efficiency as the dwelling is minimally heated. As indoor 
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temperature lags behind occupancy it is not optimal in terms of comfort level. This effect is 
particularly strong when occupants enter a dwelling whose indoor temperature is far from 
௦௘௧,௔௖௧௜௩௘ߠ
ௗ  or ߠ௦௘௧,௣௔௦௦௜௩௘

ௗ , but is ignored in this study. 

2.2.1  Occupancy model 
Citizens are modelled solely by the occupancy in their respective dwellings, using a 
probabilistic occupancy model that has been applied in several studies, albeit at the scale of 
single dwellings [18]–[20]. The occupancy model consists of a time-heterogeneous Markov 
chain with the following states: (1) not at home, (2) active at home, and (3) asleep at home. 
As the Markov chain is time heterogeneous, transition probabilities between the states of the 
Markov chain are time dependent, and hence the transition matrix ܲݎ௣ for person ݌ at time 
݇ is defined by the collection of its entries ݌௜,௝

௣ ሺ݇ሻ∀݅, ݆ ∈ ሼ1, 2, 3ሽ. 
     Every person has exactly one home, so we can define a time-invariant set of people ௗܲ for 
every dwelling ݀ such that the family of sets ஽ܲ ൌ ሼ ௗܲ|∀݀ ∈  ሽ form a partition ofܦ
population ܲ and ∪ௗ∈஽ ௗܲ ൌ ܲ and ௗܲభ ∩ ௗܲమ ൌ ⌀	∀	݀ଵ ് ݀ଶ hold. The time dependent set 
of occupancy of dwelling ݀ at time ݇ as used in the heating system control model can then 
be given as ௞ܲ

ௗ ൌ ሼ݌ ∈ ௗܲ|p	is	active	at	home	or	p	is	asleep	at	homeሽ. 

2.2.2  Thermal model of the dwellings 
Dwellings are modelled following the simple hourly dynamic model of EN ISO 13790 [26]. 
Each dwelling is represented as a single thermal zone with squared floor area which is 
entirely heated. The dwelling consists of only one storey with equally sized windows facing 
north, south, east, and west. Ventilation and infiltration is limited to constant natural 
ventilation, and heat gains are limited to metabolic heat gains. Furthermore, heat transfer 
between dwellings is ignored. 
     The unknown and bounded heating power ߔு஼,௡ௗ,௞

ௗ  is determined by the need to reach the 
set point temperature as defined by the heating system control. According to [26], it is 
assumed that the controller has a perfect dwelling model and can hence determine the 
necessary heating power in a precise manner. 

2.3  Model calibration 

The following subsection describes methods to calibrate the conceptual model as defined 
above. In particular two types of data sets are taken into account: (1) time use survey (TUS) 
data and (2) aggregated census data, which both are available for many regions of the world, 
and in the case of TUS data, even in a standardised manner [24]. The TUS data is used to 
calibrate the occupancy model, whereas the aggregated census data is used to generate a 
synthetic population. In addition to these, a micro sample of census data is necessary, i.e. 
fully detailed census data for a fraction of the population. For the approach described in this 
study, that data must be available in the TUS data set, i.e. for each participant whose time 
use is recorded in the study, we will demand features of the participant as well, e.g. their 
socio-economic situation. 

2.3.1  Occupancy model 
The transition matrix ܲݎ௣ for each citizen is derived from the TUS data set. The TUS data 
set contains location and activity data for each participant at a high temporal resolution in the 
form of a diary. Diaries span at least a day, though typically a weekday and a weekend day 
are recorded as time use varies between these days [24]. In the following, a mapping is 
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performed from each tuple of location and activity to one of the states of the Markov chain. 
As an example, the tuple (location = 'workplace, activity = 'lunch) is mapped to 1 = not at 
home, as is (location = 'second home’, activity = 'sleep'). After the mapping, each diary can 
be understood as a concrete instance of a stochastic process that is described by the time 
heterogeneous Markov chain of the occupancy model. The set of participants is clustered by 
one or more household or people features ܨ, e.g. age, which is available in both, the TUS 
data set and the aggregated census, and a time-heterogeneous Markov chain for each cluster 
following the approach used e.g. by [18,20] is created. The resulting set of transition matrices 
ሼܲݎ௙|∀݂ ∈  ሽ then allows us to deterministically allocate a transition matrix to a citizenܨ
based on the citizens feature value ݂௣: ܲݎ௣ ൌ ௙ݎܲ

೛
. 

     The choice of household or people features is important for the quality of this approach. 
While theoretically all features could be used, in practise this might lead to sample sizes of 
that type of person which is too small. Hence, a subset of features must be chosen. 
Unfortunately, we are not aware of a deterministic way of choosing the correct subset of 
features. We instead acknowledge the inherent uncertainty and analyse features, their 
correlation among each other, and their correlation to the derived time series. We furthermore 
discuss the sensitivity of the results to the choice of features in the case study performed. 

2.3.2  Synthetic population 
The urban scale occupancy model as described above needs information on the composition 
of every household, and household and people feature vectors ݂௣ for every individual ݌ in 
the population of the study area. Such disaggregated data is typically not available and hence 
the population is synthesised from aggregated census data and typical population 
compositions given by micro samples of census data. Population synthesis as a way to 
initialise micro-simulations has been applied in the past mainly in land use and transportation 
models [27], [28], but more recently in energy models as well [29]. [30], provides an 
overview over the different approaches that are available. 
     In population synthesis, the aim is to estimate the joint probability mass function ݌ி for a 
set of ݊  features ܨ ൌ ሼܨଵ, ,ଶܨ . . . ,  ௡ሽ which describes the correct distribution of those featuresܨ
in the actual population, given a set of marginal probability mass functions ݌ி෥  for a subset of 
features ܨ෥ ⊂ ܨ As a simple example for the two-dimensional case of .ܨ ൌ ሼsex, ageሽ 
consider that marginal probability mass functions ݌௦௘௫ሺ ଵ݂ሻ and ݌௔௚௘ሺ ଶ݂ሻ are known and the 
joint probability mass function ݌௦௘௫,௔௚௘ሺ ଵ݂, ଶ݂ሻ is to be estimated. 
     In the case of this study, the relationship between households and people must be retained 
when creating the synthetic population. Solutions for such hierarchical problems have been 
discussed in the past [31]–[33], and in the case of this study the approach of [32], is followed. 

2.3.3  Thermal dwelling model and heating control system 
To isolate the impact of occupants on the space heating energy demand in buildings in this 
proof-of-concept study, we are assuming the same physical conditions for all dwellings. We 
are hence defining a default dwelling and are allocating it to each household in the study area. 
This can be compared to normative building energy assessment where the object of study is 
the building and its impact on energy demand. Heating behaviour in these assessments is 
considered external to the object of study and equal among all buildings which allows to 
compare the physical structure of buildings only. Here, the object of study is the heating 
behaviour of occupants and its impact on energy demand. The physical structure of the 
building is considered external to the object of study and always equal among all households. 
Equal configuration is assumed for the heating control system as well. 
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3  CASE STUDY 
The model is applied in a case study of the London Borough of Haringey which according to 
latest census data [34], is the home of 254,926 usual residents and comprises of 101,955 
households. For this case study two data sets have been used: the UK Time Use Survey 2000 
[35] and the UK 2011 Census [34]. The former contains time use diaries with a resolution of 
10 min for a weekday and a weekend day for more than 11,500 individuals of nearly 6,500 
households in the UK. The latter contains aggregated census data for so called output areas 
(OA) comprising of at least 40 resident households and 100 resident people to ensure 
confidentiality. Haringey is divided into 753 distinct output areas which are aggregated into 
145 Lower Super Output Areas (LSOA) and furthermore into 19 wards. The source code for 
this case study is published under an open source license and is available online [36], [37]. 
Table 1 summarises the parameters of the thermal dwelling model applied for the dwelling 
of each household in Haringey.  

3.1  Feature selection results 

In the first step, features that are used to form the occupancy model and the synthetic 
population are examined. Associations between features and the occupancy time series in the 
TUS data set are determined and used as an indication of features that are more significant. 
Later, we will investigate the sensitivity of the simulation results to the choice of features. 
To illustrate the necessity to cluster the sample population, Fig. 2 shows all occupancy time 
series in the data set (a) raw, and after clustering by (b) economic activity and (c) age. Each 
occupancy time series is depicted vertically using three colours: white for (1) not at home, 
dark grey for (2) active at home, and light grey for (3) asleep at home for both days starting 
from midnight weekday until the end of the weekend day. While some patterns like the 
stronger homogeneity at night times are clearly visible, the data appears noisy. After 
clustering by either economic activity or age, the in-cluster homogeneity becomes visually 
stronger and more patterns emerge. 

Table 1:  Model parameters applied in Haringey study.  

parameter name value parameter name value 

thermal mass capacity 9.9 MJ/K initial indoor temp 20 ˚C 

thermal mass area 150 m2 absent set point 0 ˚C 

floor area 60 m2 passive set point 18 ˚C 

room height 2.5 m active set point 22 ˚C 

window to wall ratio 0.19 max heating power 10 kW 

U-value wall 0.26 W/(m2 
K)

metabolic heat 
active

140 W 

U-value roof 0.12 W/(m2 
K)

metabolic heat 
passive

70 W 

U-value floor 0.40 W/(m2 
K)

metabolic heat < 
18

0.75 

U-value window 1.95 W/(m2 
K) 

natural ventilation 
rate 

0.65 l/(s 
m2) 

transmission adjustment 
ground

0.91   
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Figure 2:  Occupancy time series. (a) raw; (b) clustered by economic activity; (c) clustered 
by age groups. Occupancy is colour coded using white for (1) not at home, dark 
grey for (2) active at home, and light grey for (3) asleep at home. 

     In the following analysis, five people features and three household features are considered. 
People features are: the economic activity, highest qualification, age, and personal income of 
a person and whether that person is looking after another person. Household features include 
the composition of a household, the region it is located in, and the population density in the 
household's postcode sector. As all features and the occupancy time series are nominal, we 
will use Cramér's V method [38], to denote the strength of association between a feature and 
the occupancy, which ranges between 0 and 1, with ߔ஼. The original method is shown to be 
a biased estimator [39] and we will hence use the suggested bias correction. We will measure 
association between a subset of features and occupancy for each of the 288 time steps of the 
time series. Fig. 3 shows the results for a selected number of subsets. 

 

Figure 3: Time dependent association between people features and occupancy. 
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     A strong time dependency is visible, indicating that at certain times of the day occupancy 
is stronger associated to people or household features than on others. Weekday and weekend 
day show similar, but distinct patterns, and the weekend day reveals a weaker association at 
almost all time steps of the day. The region and the population density of the household's 
surrounding area don't show a significant association at any time of the day, indicating that 
there are no significant differences in occupancy patterns between, e.g. rural and urban 
environments. Among single features, economic activity and age show the highest 
association throughout both days; a finding that is in line with former research [19]. 
Combined features reveal an association that is higher than single features at most times of 
the day. Combination of three features, like the depicted combination of economic activity, 
age, and household type show the highest association but their curves are unsmooth, 
indicating overfitting and sample sizes that are too small. 
     Table 2 shows the average association over the day for selected feature combinations and 
the average size of their clusters. The combination of economic activity, age, and household 
type reveals the highest average association, but also has a low average sample size. Among 
the tuple combinations of features, Table 2 shows the four with the highest average 
association, which have a significantly larger average cluster size than combinations of three 
features. 
     Based on these results it is concluded that: (1) There exists no strong argument for 
assuming different occupancy patterns based on spatial location only, e.g. in rural or urban 
areas. Hence, although our case study is an urban environment, the TUS data set is not filtered 
by spatial location. (2) Combinations of 3 features reveal high association with the occupancy 
time series but seem overfitted. Their cluster sizes are too small to be used to fit the 
occupancy Markov model and hence combinations of 3 features are not considered.  
(3) Combinations of 2 features reveal higher associations with the occupancy time series than 
single features while their cluster sizes remain reasonably high. Several combinations show 
high association and the sensitivity of the model to those is investigated. 

Table 2:   Average of time dependent association between people and household features 
 and average cluster size for feature combinations with highest average	஼ߔ
association. 

features ߔ஼ avg cluster size 
economic, age, hh composition 0.22295 35 

economic, age 0.21534 117 
economic, qualification 0.19142 121 

economic, hh composition 0.18996 202 
economic, region 0.18953 66 

3.2  Simulation results 

Using economic activity and age as discriminating features, a model of Haringey can be 
formed by creating a synthetic population for every LSOA following a zone-by-zone 
approach [30] and the model can by simulated by the open-source simulation model [25]. 
The simulation is run for two winter days, a weekday and a weekend day, and the results for 
both days are scaled appropriately energy-wise to represent a full week. Due to the population 
synthesis, model results are aggregated on the LSOA level. Fig. 4 shows a choropleth map 
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of Haringey where the (a) average, and (b) standard deviation of the energy demand for one 
full week per dwelling is depicted for every LSOA. 

 

Figure 4: Simulated energy demand in each LSOA of Haringey for a week in January 
[kWh/week]. (a) Average across all households; (b) Standard deviation across all 
households. 

     The map reveals a few spatial patterns, most significantly a higher energy demand in the 
north-eastern corner of Haringey and a negative correlation between the two. The variation 
in average energy demand is though only marginal, with less than 6% difference between 
most LSOA. 
     Fig. 5 depicts the thermal power profiles for each LSOA, as average and standard 
deviation among all households in one area. The average thermal power varies between 
LSOA's with up to 400 W per household. Large variations can be seen during daytime, and 
in particular in the evening hours. The temporal pattern follow the ones that are visible in the 
occupancy time series depicted in Fig. 2. The standard deviation shows a more permanent 
spread across the LSOAs, with around 300 W per household peak and significant variations 
in particular in the evening hours of weekdays but in particular also during daytime on 
weekends. 
 

 

Figure 5: Average thermal power per household across LSOAs. 
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Figure 6: Pairwise relationships of population features and simulated energy usage per 
LSOA. 

     To understand relationships between people and household features and the energy usage 
as seen above, Fig. 6 depicts the pairwise distributions between the average household size, 
the average age, and the share of economically active people in a LSOA and the energy usage 
as determined by the simulation model in terms of average energy usage per household. The 
only visible trend is a negative correlation between the share of economically active people 
and the average energy demand. In general, a direct link between single feature values of a 
LSOA and its energy demand does not seem possible. It shall be noted that the sensitivity of 
these results towards simulation parameters like season and length of the simulation must be 
further investigated. 

3.3  Results for alternative feature selection 

To explore the sensitivity of the methodology to the selected subset of features, further 
simulations are run with different choices of features for the clustering of the population 
sample and as a control variable for the population synthesis. In particular, the features age 
and highest qualification have been chosen to run. In addition, one simulation has been 
performed without clustering the population by not taking into account any feature. The 
results are shown in Fig. 7 in the form of the difference to the simulation above of aggregated 
thermal power per household on the ward level. The average per ward varies rather strongly 
during daytime on the weekday while all feature selections reveal similar results on the 
weekend. The difference in standard deviation is particularly strong in the evening hours and 
generally throughout the weekend. 
 

 

Figure 7: Difference to the original run in average thermal power per household in  
different wards. 
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4  DISCUSSION AND CONCLUSION 
This paper evaluates the usefulness of microsimulations for urban energy systems by 
presenting the proof-of-concept of introducing occupancy models to high resolution bottom-
up energy models. A synthetic population is created from census data and the occupancy of 
every citizen is modelled using a time heterogeneous Markov chain which is calibrated using 
time use survey data. The fraction of the variability of the thermal energy demand caused by 
building specifics is deliberately ignored and heating system control is considered to be based 
on occupancy only to highlight the impact of occupants. This study is hence hypothetical and 
aims at understanding underlying mechanics of energy demand rather than actual energy 
demand. 
     In the application of this methodology to the London Borough of Haringey, the average 
thermal energy demand for space heating varies only marginally between the 145 LSOAs of 
in average around 1700 citizens into which Haringey is divided and to which results are 
aggregated. The standard deviation of energy demand per dwelling varies much more among 
the LSOAs indicating a higher diversity of household compositions in these parts of the city. 
When looking at thermal power profiles similar temporal patterns to the ones from the input 
time use data can be seen: low variability in average thermal power during the night and on 
the weekends, and a larger variability during working hours. At noon on a workday for 
example, the LSOA with the lowest average power shows a thermal power of roughly 400 
W per household, while the LSOA with the highest average power shows a thermal power 
above 600 W per household. The standard deviation of thermal power between dwellings 
varies strongly in the evening hours of workdays and during the weekend. 
     The results are sensitive to the selection of people and household features that are used to 
calibrate the model. Further work must be spent on understanding the uncertainty introduced 
through this approach. Probabilistic methods as proposed by [19], [40], should be compared 
to this deterministic approach. 
     The results support the suitability of models with low resolution when aggregated results 
are demanded. In cases where higher temporal or spatial resolution is needed, as it is for 
example for the design and optimised operation of decentralised energy supply systems, 
detailed micro simulations as performed in this study offer the potential to understand and 
predict urban energy demand better. Without correct representation of variability across 
population and household features, aspects like the timing, duration, and total amount of peak 
energy consumption are easily over or underestimated. 
     This study focusses on only one aspect of urban energy demand, namely occupancy, and 
generates energy profiles for a hypothetical scenario. The methodology and simulation 
framework allow to analyse more aspects like the spatial distribution of heating patterns, set 
point preferences [40], fraction of dwellings heated [40], and electricity demand [19] and 
incorporating those will allow to create a more comprehensive picture of urban energy 
demand. 
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