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Abstract 

The human body is most likely to ingest microbes or disinfection by-products 
(DBPs) in drinking water. More than 80% of water treatment plants use chlorine 
as a disinfectant. Approximately 14–16% of the bladder cancers in Ontario, 
Canada, are attributable to the drinking waters containing relatively high levels 
of chlorinated by-products (CBPs). In recent studies, in addition to the chronic 
cancer risk from CBPs, several acute effects including cardiac anomalies, 
stillbirth, miscarriage and pre-term delivery have been reported. In DBPs, the 
formation of trihalomethanes (THMs) is highest (60–70%); thus the health risk 
of THMs is likely to be the maximum. In this study, a framework for evaluating 
human health risk from THMs using fuzzy aggregation is presented. The 
triangular fuzzy membership functions (TFNs) are used to capture the associated 
uncertainties. The analytic hierarchical process (AHP) has been employed for 
weighting schemes of different level attributes. A sensitivity analysis has been 
performed to verify the importance of different weighting schemes.  
Keywords:  disinfection by-products (DBPs), human health risk, THMs, fuzzy 
aggregation and analytic hierarchy process (AHP). 

1 Introduction 

Use of disinfectants in drinking water supply systems virtually eliminated most 
of the water borne diseases [15] but has led to the formation of several DBPs, 
which are potential human health concern. More than 80% of water treatment 
plants use chlorine as disinfectant [1]. The DBPs formed during chlorination has 
proven history of chronic cancer risk and several acute effects to human [10, 19].  
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The naturally occurring organic materials (NOM) in surface water reacts with 
disinfectants to produce DBPs. DBPs include mainly trihalomethanes (THMs), 
haloacetic acids (HAAs), haloacetonitriles (HANs) and haloketones (HKs). Kim 
et al. [7] reported that the formation potential (FP) of THMs is in the ranges of 
55-102.6 µg/l, followed by HAAFP (9.1-23.6 µg/l) and HANFP (10.3-33.6 µg/l), 
where the FP of THMs was most frequent. The frequency of THMs in drinking 
water is the highest than any other group of DBPs [7, 8]. 
     The increased risks of bladder, colon and rectal cancers, as well as adverse 
reproductive and developmental effects are also attributable to the chlorinated 
by-products [18, 19]. The toxicological data for the THMs on human health is 
shown in Table 1. The THMs has possible cancer effects and other acute and 
chronic effects to human health (Table 1). 

Table 1:  Human health toxicological data for THMs components. 

Compounds  Human Health 
Carcinogenicity 

Reference Dose 
(RfD) [mg/kg/day] 

Slope Factor (SF) 
[mg/kg/day]-1 

Chloroform  Yes (B-2) 0.01 0.0061 
Bromodichloro
methane  Yes  (B-2) 0.02 0.13 

Bromoform  Yes (B-2) 0.02 0.0079 
Dibromochloro
methane  Yes (C) 0.02 0.0084 

      
     The International Programme on Chemical Safety concluded that the levels of 
health risks from DBPs in drinking water are extremely small in comparison to 
the risks associated with inadequate disinfection [6]. Approximately 3.4 million 
people, mostly children, die each year from water-related diseases [20]. 
Unquestionably, disinfection is required; thus there is a need to evaluate the 
associated health risk to assess the performance of treatment technology. 
The most dominant and frequent species of DBPs, the THMs, have been 
considered in this study to evaluate human health risk.  

2 Human health risk assessment 

In human health risk assessment different types of imprecision (variability and 
uncertainties) are associated. The widely used approach to capture uncertainties 
is Monte Carlo (MC) simulation; but imprecisely informative data cannot be 
analyzed in MC simulation [9]. On the contrary, Fuzzy logic provides a language 
for imprecise and qualitative knowledge into numerical reasoning [2, 12].  
     The real world’s problems are sometimes defined in qualitative terms like 
high, medium and low by the managers, stakeholders rather than the numerical 
quantities. A fuzzy set is an extension of the traditional set theory in which the 
element has certain degree of membership µ (0 to 1) in set A; thus a smooth 
transition between binary logic in the traditional sets (0 or 1) is established. 
The triangular fuzzy numbers (TFNs) and trapezoidal fuzzy numbers (ZFNs) are 
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mostly used to represent the linguistic terms [9,12]. The fuzzy evaluation of 
human health risk is discussed in the following sections. 

2.1 Identification of basic attributes  

The THMs, consists of chloroform, bromodichloromethane, bromoform and 
dibromochloromethane, in which chloroform is 70-90% of the total THMs [5]. 
The human health risk (a) has been divided into two generalized attributes (a1 for 
cancer risk; a2 for non-cancer risk) as shown in Figure 1. In the level 3, the 
attribute a1 is broken into four basic attributes: a11, a12, a13 and a14 for cancer risk 
from chloroform, bromodichloromethane, bromoform and dibromochloro-
methane respectively. The attribute a2 has been broken into four basic attributes: 
a21, a22, a23 and a24 for non-cancer risk from chloroform, bromodichloromethane, 
bromoform and dibromochloromethane respectively (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Framework for basic attributes and fuzzy evaluation. 

2.2 Fuzzification of the basic attributes 

The basic attributes are generally expressed in 5-11 granules [11, 12] to 
incorporate the experts’ judgments. In this study, five linguistic terms (granules)- 
worst, bad, fair, good and best have been taken for simplicity. Too many scales 
(granules) may induce complex mathematical calculation. After defining the 
fuzzy subsets, the basic attributes are expressed with the membership grades in 
the predefined five granules (µ1, µ2, µ3, µ4, µ5) for worst, bad, fair, good and best 
respectively. It is shown in Figure 2, where for example, an element P is defined 
in five granules. Let us assume that the data for P as (0.5,0.62,0.7) which 
indicates the TFN in the range of 0.5-0.7 with most likely value of 0.62. This is 
mapped in Figure 2. If the variable P intersects any granule more than once, the 

Level 3  Level 2 Level 1 

a12 (bromodichloromethane)

a13 (bromoform) 

a11 (chloroform) 

a1 (cancer 
risk) 

a (human 
health risk) 

a14 (dibromochloromethane)

a22 (bromodichloromethane)

a23(bromoform)  

a21(chloroform) 

a24 (dibromochloromethane)

a2 (non-cancer 
risk) 
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maximum operator is used [21]. The membership grade for µ1(worst) = 0, 
µ2(bad) = 0.33, µ3(fair) = max (0.97, 0.88) = 0.97, µ4(good) = 0.36 and µ5(best) 
= 0 were noted; thus the fuzzy sets for P becomes (0, 0.33, 0.97, 0.36, 0).  

              

 

 
 
 
 
 
 
 
 
 

Figure 2: Defining fuzzy membership function. 

     This study considers the basic attributes as cancer and non-cancer risks from 
chloroform, bromodichloromethane, bromoform and dibromochloromethane. 
The concentrations of the THMs components are presented in minimum, most 
likely and maximum format in Table 2 [8].  

Table 2:  THMs in tap water in Newfoundland (µg/l). 

Compounds  Minimum Most likely  Maximum  
Chloroform  19.4 121.18 283.1 
Bromodichloromethane 1 2 6.1 
Bromoform  0.1 0.5 1.0 
Dibromochloromethane 3.9 7.85 18.61 

 
     The cancer and non-cancer risk from drinking water ingestion was evaluated 
following USEPA [17] as 

WT
IFDwC

CDI =      (1) 

where, CDI = chronic daily intake (mg/kg/day); Cw = chemical concentration in 
drinking water (mg/l); I = drinking water ingestion rate (2 l/day for residents);  
F = exposure frequency (365 days/year for residents); D = exposure duration 
(77.1 years for Newfoundland [14]; W = Average body weight (70 kg); T = 
Averaging time (77.1×365 =28141 days for Newfoundland [14]  

       Cancer Risk = CDI × SF         (2) 
where,  SF = slope factor ([mg/kg/day]-1) 
     The non-carcinogenic effect defined as hazard quotient is calculated as 

                           Hazard Quotient = 
DfR

CDI                 (3) 

where, RfD = reference dose (mg/kg/day) 

0 0.4 1.0 0.2 0.8 0.6 

µ1       µ3       µ2       µ5       µ4 
   

   0 
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     The Federal Register [4] recommends the acceptable range of human health 
cancer risk to be 10-6 to 10-4 (logarithmic scales: -6 to -4). The membership 
functions for cancer risk are shown in Figure 3. The hazard quotient in the range 
of 0 to 1 is acceptable range for human health protection [17]. The membership 
functions for non-cancer risk are constructed in Figure 4. The membership 
functions have been constructed in logarithmic scale to capture the extremely 
low values of risk (Figures 3 and 4). The predicted risks are then mapped on 
Figure 3 (for cancer risk) and Figure 4 (for non-cancer risk) to obtain the fuzzy 
sets. These fuzzy sets for human health risks are shown in Table 3. 
 
 
 
 
 
 
    
 
 
 
 
 

Figure 3: Membership function for cancer risk (log-scale). 

 

Table 3:  Membership functions for human health risk. 

Basic attributes Membership function 
Cancer risk (µ1, µ2, µ3, µ4, µ5) 
Chloroform (a11) (0.52, 0.83, 0.26, 0, 0) 
Bromodichloromethane (a12) (0.25, 0.96, 0.29, 0, 0) 
Bromoform (a13) (0, 0, 0.28, 0.94, 0.33) 
Dibromochloromethane (a14) (0, 0.47, 0.74, 0.07, 0) 
Non-cancer risk (µ1, µ2, µ3, µ4, µ5) 
Chloroform (a21) (0.66, 0.73, 0.18, 0, 0) 
Bromodichloromethane (a22) (0, 0, 0.66, 0.66, 0) 
Bromoform (a23) (0, 0, 0.12, 0.91, 0.49) 
Dibromochloromethane (a24) (0, 0.31, 0.94, 0.18, 0) 

2.3 Defining relative weights 

The fuzzy evaluation requires relative importance of attributes at each hierarchy 
level. The analytic hierarchy process (AHP) is mostly used to define relative 
importance of each level attributes [11]. The fundamental scales of importance to 
develop the priority matrix can be found in Saaty [11]. These relative weights are 
then normalized to unity and the priority matrix is formed in such a way that 

a11

   µ5      µ4   µ3     µ2    µ1

     -8       -6      -4     -7      -5 

0

0.5 

1.0 
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Figure 4: Membership function for non-cancer risk (log-scale). 

( )nw,.....2w,1wW =  where ∑
=

=
n

1k
1kw                                (4) 

A simple example to establish the priority matrix is illustrated as follows: 
Consider three attributes as x11, x12 and x13. It is assumed that attribute x11 is 2 
times important than x12 and 3 times than x13. Each element of the lower triangle 
in the matrix is reciprocal to the upper triangle ( jkI/1jkI = ). The matrix is as 

 I     = 

167.0333.013x
5.115.012x

32111x
13x12x11x

                    (5) 

The matrix I can be formed by taking row wise geometric mean [11] of elements 
and normalization to unity as 

I =
















607.0
909.0
817.1
















=⇒

182.0
273.0
545.0

W     (6) 

Chloroform, bromodichloromethane and bromoform have been classified as 
‘probable human carcinogen (B–2)’ and dibromochloromethane as ‘possible 
human carcinogen (C) by the regulatory agency [16]; thus 
dibromochloromethane was given less priority in the weighting scheme 
(Table 4). To make the calculation simple, equal importance is given to each of 
the basic attributes for non-carcinogenic risk prediction (Table 4). 

2.4 Obtain more generalized level attributes by aggregation 

Once the weights and fuzzy sets for the basic attributes are determined, these are 
then grouped according to the hierarchy framework (Figure 1). For example, 
assume that at level 2, we have three basic attributes for X1 as x11, x12 and x13. 
The fuzzy sub sets for the three basic attributes are  

a21

1.0 

0.5 

0 
0 -1-2-3 -4 

µ5 µ1 µ2µ3µ4 
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X1    =  
















13x
12x
11x

   =  














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


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13
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4,13
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2,13
1

12
5,12

4,12
3,12

2,12
1

11
5,11

4,11
3,11

2,11
1

µµµµµ

µµµµµ

µµµµµ

  (7) 

The weight vectors for the three attributes are 
]W1    =    [ 13W12W11W ]    (8) 

The evaluation matrix A1 for attribute X1 is obtained as 
1X1W1A ×=      (9) 

These evaluation matrices are then carried over for more generalized level 
attributes. The procedure is followed until the final fuzzy set is obtained. 

Table 4:  Weighting schemes of the attributes. 

Basic 
Attributes 

W2  W1 (T1) W1 (T2) W1 (T3) W1 (T4) 

a11 0.273 
a12 0.273 
a13 0.273 
a14 0.182 

a1 0.67 0.6 0.5 0.4 

a21 0.25 
a22 0.25 
a23 0.25 
a24 0.25 

a2 0.33 0.4 0.5 0.6 

2.5 Defuzzifying the final sets 

The final risk is generally expressed by the crisp values, which can be obtained 
through defuzzification. The expression of risks in the linguistic terms like worst, 
bad, fair, good and best can be performed through determination of Euclidean 
distance of a given fuzzy sets to each of the fuzzy sets representing the linguistic 
expressions [14]. Many other methods [2] are available for defuzzification. 
In this study, the Euclidean distance method [14] is followed for simplicity in 
calculation. For example, if a expresses the resultant fuzzy set and w expresses 
the linguistic condition of worst, then the distance between a and w can be 
determined from 

( ){ }
( ){ }k|kww

k|kaa
=
=

 

Distance, daw = ( ) ( ){ } 2
1

n

1k

2kwka 







∑ −
=

   (10) 

The fuzzy sets with shortest distance represents the maximum possibility [14]. 
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3 Calculation 

3.1 Second stage calculation 

The fuzzy subsets for cancer risk (a1) and non-cancer risk (a2) are integrated to 
determine the evaluation matrix for next hierarchy level. The evaluation matrix 
for a was determined using the weighting schemes and fuzzified basic attributes 
as 

a1   = [0.21    0.57    0.36    0.27    0.09] and 
a2   = [0.17    0.26    0.48    0.44    0.12] 

3.2 First stage calculation 

The final fuzzy set for human health risk can be evaluated as 
a = [0.2, 0.47, 0.40, 0.33, 0.1]  
The final fuzzy set for human health risk can be expressed as  

a = 
Best
0.1     

Good
0.33     

Fair
0.40     

Bad
0.47    

Worst
0.20 ,,,,  

The Euclidean distances between fuzzy set ‘a’ and the linguistic conditions 
worst, bad, fair, good and best have been determined using Equation (10) as 
1.06, 0.77, 0.86, 0.94 and 1.16 respectively.  

4 Sensitivity analysis 

The weighting schemes and classification of linguistic terms involve human 
judgments; thus a possibility of variation by using different weighting schemes is 
expected. So, it is required to perform sensitivity analysis with various weighting 
schemes. The weighting schemes for the basic attributes were kept unchanged 
for simplicity of calculation. The different weighting schemes employed in 
sensitivity analysis are shown in Table 4. The results for different weighting 
schemes are shown in Table 5. The first and second positions were occupied by 
the ‘bad’ and ‘fair’ in each trial (Table 5). The weighting scheme was found to 
have low sensitivity on changing human health risk status. 
 

Table 5:  Results of sensitivity analysis. 

Euclidean distance Linguistic 
grade Trial 1 (T1) Trial 2 (T2) Trial 3 (T3) Trial 4 (T4) 
Worst (µ1) 1.06 1.1 1.07 1.08 
Bad (µ2) 0.77 0.8 0.83 0.86 
Fair (µ3) 0.86 0.84 0.83 0.81 
Good (µ4) 0.94 0.92 0.91 0.88 
Best (µ5) 1.16 1.15 1.14 1.14 
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5 Summary and conclusions 

The management of drinking water treatment technologies is subjective to 
human health risk and associated cost. For drinking water treatment system, it is 
required to indicate whether a treatment facility should be upgraded or replaced. 
In such a case, the system must be able to predict the final condition on human 
health risk from DBPs. The proposed methodology may a tool for such purposes. 
     The fuzzy aggregation has been applied to evaluate human health risk from 
THMs in drinking water. The values of different basic attributes showing human 
health risk were evaluated using equations  (1-3). These were then mapped in 
Figures 3 (for cancer risk) and 4 (for non-cancer risk) to construct fuzzy sets. By 
assigning different weighting schemes (Table 4), several trials were performed to 
verify the effects of different weighting schemes. The human health risk 
condition switched between ‘bad’ and ‘fair’ in all the trials (Table 5). 
The weighting schemes were found to be less sensitive to change the risk status. 
     This study provides a framework for a human health risk assessment from 
THMs in drinking water supply system. This technique involves identification 
and fuzzification of basic attributes, assigning weights, aggregation and 
defuzzification. The basic attributes were fuzzified using five linguistic fuzzy 
subsets-worst, bad, fair, good and best. The evaluation matrix of each level was 
used for next higher-level assessment. The final fuzzy sets were defuzzified 
using Euclidean distance approach. The weighting schemes were developed 
using AHP.  
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