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Abstract 

In human history research in geometry takes a central place between other 
scientific developments. A major content was clearly defined already around 300 
B.C. in Euclid’s book “Elements”. This paper gives an overview of human 
handling of Complex Geometry, which reaches beyond the simple forms like 
square/cube and circle/sphere. Complex Geometry includes the cone and its 
sections, ruled surfaces and polyhedra. Cone sections and polyhedra are part of 
Euclid’s knowledge, but geometricians and architects had a hard job to depict 
these forms well and thus to understand them, let alone to use them. People got 
interested in Complex Geometry, in order to copy “perfect” natural shapes like 
crystals. More important was, that simple geometry turned out to be not 
sufficient for establishing innovative design. By its hermetic structure, Complex 
Geometry has the power to generate surprising shapes along a logical path. A 
historic survey proves that only in cooperation with artists of superb handicraft 
(drawing, modeling, carving) could Complex Geometry be investigated 
fruitfully. It was not until the early 19th C. that ruled surfaces were defined and 
illustrated in a sufficiently clear way (Monge, Leroy). 
Keywords: polyhedra, cone sections, ruled surfaces, descriptive geometry, 
model. 

1 Polyhedra [1,2,3,4] 

An interesting aspect of the phenomenon “polyhedra” is its generalization by 
Paolo Uccello (ca. 1397-1475). Ucello, being an early Renaissance painter, 
struggled with the correct depiction of perspective, and he experimented with 
detail shapes, spread over his paintings, which could be drawn in perspective by 
common rules. These shapes included the "mazzocchio" a ring-like hat. This 
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torus shape is based on identical trapezes, which were structured by a poligon of 
16 or 32 sides, the ring section being a hexagon or an octagon. His method 
included vast preparatory drawings alike web-like drawings of today’s Computer 
Aided Design (CAD). His method of depicting objects included complex vase 
shapes and stellated objects [2]. See also the ‘polygonic’ art of Ben Jakober [10]. 
     The theology professor Luca Pacioli, from Borgo San Sepolcro (Fra Luca di 
Borgo, ca. 1445-1517) was involved in a research project for the Duke of 
Urbino, Guido Ubaldo, and Bishop Valletari, seeking to define correctly the 
mathematical shapes of polyhedra [1,2], which were thought to be of symbolic 
significance [3]. His scientific publications included the first Italian translation of 
Euclid's "Elements". A new aspect in the search for representation is the devising 
of different kinds of models of polyhedra. Pacioli's method of working 
essentially develops new forms by truncation (for instance cuboctahedron) or 
addition (stellated polyhedra). His presentation of results is unique for his time. 
He found no one else than Leonardo da Vinci (1452-1519) as illustrator of the 
complex polyhedron models in perspective for this project [1,2,3]. Leonardo da 
Vinci's illustrations for Pacioli's "De Divina Proportione" show polyhedra as 
lattice structures. Drawing the edges of a polyhedron with more than one line 
allows the artist to discriminate which edges are in front and which are behind, 
which is a great help in visualizing structures in space. Leonardo's skill as a 
draughtsman shines especially in his drawings of machines and complex building 
designs and there is clearly a connection between his illustrations for Pacioli of 
latticed polyhedra and his linear stereometric images of architectural structures. 
The monk Pacioli's interest in polyhedra is further documented in a double 
portrait painting by Jacopo de' Barbari (1495), showing him with a young 
nobleman in the role of a pupil. On a desk are objects relevant to geometry and 
drawing and a solid wooden dodecahedron. Of particular interest is the model of 
a semi-regular polyhedron - a rhombicuboctahedron as Kepler named this shape 
made of eighteen squares and eight triangles [2,4]. This polyhedron of glass 
polygons, probably blown in one piece, is half filled with water. A thread 
crossing the glass bowl in its centre is fixed to its bottom and suspends it in an 
unstable equilibrium from the ceiling. This water-filled glass polyhedron can be 
interpreted as a measuring device, making use of physical laws. 
 

 

Figure 1: The five platonic polyhedra, their symbolism air, fire, universe, 
earth, water and stellated examples as depicted by Johannes Kepler 
in “Harmonices mundi” (1619). 
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Figure 2: Uccello’s stellated polyhedron; portrait of Pacioli with glass, water 

filled polyhedron; Leonardo’s sketches of crystalline shapes (codex 
atlanticus); Dürer’s Dodecaedron, conical section ellipse and the 
etching “Melancholia”; Jamnitzer’s installation to draw 
perspectives and some brilliant results; some paper models by 
Brückner. 
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     Because the suspension is vertical and the water level horizontal, any 
horizontal section of the polyhedron can be generated by varying the amount of 
water and the result can be compared with drawings. An interpretation of the 
glass object as symbolic for alchimistic activity has been published by Alberto 
Pérez-Gómez [3] which I commented on in [4]. 
     Albrecht Dürer (1471-1528) and Wentzel Jamnitzer (ca. 1508-1585) have 
worked on polyhedra and they lived in the city of Nürnberg. In Nürnberg, during 
the Renaissance period, which occurred in Germany somewhat later than in Italy, 
some handcrafts were highly developed: there of the printer, instrument maker, 
silversmith, for example. Besides being a pioneer writer on Renaissance themes 
in the German language Dürer was an expert in graphic design [2]. His books 
show a beautiful lay out, making use of excellent lettering and always giving 
enough white around a picture. This clearness, however, in the case of his 
explanation of the cone sections, or the polyhedra, turns out to be rather graphic 
than geometrical. Famous is his illustration of the ellipse as a cone section, of 
which his geometrical construction shows a somewhat pointed result. In the text 
he proposes the German word for the foreign word ellipse as “eyerlini” because 
of it egg-like appearance. Other small errors can be found in his depicting of 
some polyhedra, in which he draws the dodecahedron front view touching the 
middle section of the superscribing sphere, although in proper projection there 
should be a small distance. On the other hand, Dürer was a far better illustrator 
than most of his contemporaneous colleagues, and until 1800 mistakes in 
illustrating regular polyhedra are usual in the handbooks.  
     Wentzel Jamnitzer, a silversmith and instrument maker, made a private book 
project in which he thematized the shape of the five regular polyhedra by adding 
or subtracting [2]. In this way quite a lot of phantastic crystalline bodies occurred 
with alternating convex and concave parts. Some interesting aspects are that he 
depicted them in a perfect perspective, enhancing its spacial qualities, and that he 
made use of models of basic shape, which he analysed with a perspective 
machine, similar to the one Dürrer had explained. His etchings include funeral 
monuments, a thematic typical of the architectural fantasies of that time.   
     As a physicist of Newtonian stature, Johannes Kepler (1571-1630) made a 
major contribution to astronomy by showing that the orbits of the planets were 
ellipses having the sun as one focus. But his pursuit of the idea that the distances 
of the planets from the sun were proportionate to the dimensions of the five 
regular polyhedra nested inside one another was, in retrospect at least, a 
stultifying mistake. Kepler contributed to the best known astronomical 
tabellarium of his days, that of Tycho Brahe (1546-1601) and in his book 
"Harmonices mundi" (Frankfurt a.M. 1619) he discussed new concave 
polyhedral solutions and developed a systematic latin nomenclature, which is 
still valid today [2]. 
     In the preface of his book "Vielecke und Vielflache. Theorie und Geschichte" 
(Leipzig 1900), Max Brückner (1860-1934) explains that the interest of 
mathematicians in polyhedra was diminishing because many known problems 
were solved by then, although a compendium such as his, bringing together a 
historic survey and an encyclopedic classification of polyhedral examples, still 
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seemed worthwhile to him. A very interesting parallel to Pacioli is Brückner's 
care for visual presentation. By means of many conventional drawings and 
photographs of 146 paper models, which were made by Brückner in many years,  
a clear overview of the possible range of polyhedral form is presented. The 
reader is kindly invited to study the actual models at Brückner's work place, as 
he wrote. The models show also polyhedral variations of hyperboloid origin [2]. 

2 Ruled surfaces [1,5,6,7,8] 

From a geometrical point of view the cone and the cone sections are tightly 
connected to the ruled surfaces. The five sections which can be cut alternatively 
through a (double) cone object are: a point, a (double) line, an ellipse (including 
a circle), a parabola, a hyperbola. By changing the inclination degree of the 
section plane, these different shapes are generated. If one extends these two-
dimensional forms by translation or rotation, three-dimensional shapes occur like 
ellipsoid (including sphere), (one- or two-shell) hyperboloid, paraboloid, 
hyperbolic paraboloid, conoid, helicoid. In some early projects Antoni Gaudí 
(1852-1926), on his way optimizing his design approach in a controlled way, 
designed a cone shape for towers in connection with a paraboloid cupola inside. 
The magnificent interior hall of Palau Güell in Barcelona, shows this 
architecturally inventive solution, with small window holes piercing the cupola 
all over. In 1893 Gaudí designed an ideal project for a Franciscan mission post in 
Tangiers, Morocco [5]. In this project reconstructions by Torii et al show proof of 
an abundant use of the cone and its sections in towers and circular building aisles 
with oblique walls. Windows and arches in parabolic and hyperbolic shape and 
continuous helicoid stairs finish the image of a geometry based design.  

 

Figure 3: The abstract nature of Complex Geometry. 
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     “What are ruled surfaces?”. Viollet-le-Duc (1814-1879), a leading neogothic 
architect and writer explains it to a youngster in the following way. “You see this 
walking stick? I can throw it through the air with a turning effect, and the three-
dimensional shape that thus is produced is curved, but in the mean time it shows 
a constant straight section!”. The main two ruled surfaces are the hyperboloid 
(“cooling tower”), containing straight line, circle (or ellipse), and hyperbola as 
key sections, and the hyperbolic paraboloids (“saddle”), which owes its difficult 
name to the fact that besides the straight line also the hyperbola and parabola 
occur as key sections. As an abstract form, ruled surfaces extend virtually 
beyond any border, without losing its shape characteristics. Let us focus to begin 
with on the hyperboloid [6]. The invention of ruled surfaces, historically, can be 
considered “by accident”. Handicraft persons, maybe women weaving a basket, 
discovered the stool or chair, in the shape of a hyperboloid grid. 
     Of considerable interest is an early use of hyperboloids by the London 
architect Sir Christopher Wren, who belongs to those universal artists who 
included inventions and scientific discoveries in their work. In the search 
towards the manufacture of non-spherical lenses, he proposed a combination of 
two hyperboloid solids, of which the first hyperboloid is giving a turning 
movement to the second hyperboloid, which grinds the crystal body [6]. The 
movement drive between both hyperboloids is transferred in a common straight 
line (a rule of the ruled surface). Scientists like Newton already describe the 
hyperboloid, but with rather poor illustrations. A full satisfactory illustration 
level results from the descriptive geometry method [11] by Gaspard Monge (1795) 
– or rather by his pupils such as Charles-Félix-Augustin Leroy – and from early 
19th C. handbooks, the knowledge on ruled surface geometry will reach 
innovative architects. 
     An early and in the same time technically mature use of the hyperboloid 
shape is represented by the grid shell towers in steel by the Russian engineer 
Vladimir G. Suchov (1853-1939) since 1896. His designs included water towers 
and a radio transmission tower, the sabolovka tower (Moscow 1922) which was 
built in six hyperboloid sections, with a height of 150 m. The original design 
project should have had nine hyperboloid sections reaching up to 350 m, which 
is higher than the famous Eiffel tower, and intended to be built with much less 
material [1,6].  
     One particular invention in structural design had an enormous impact by its 
monument-like appearance in landscape: the cooling tower in reinforced 
concrete shell. Around 1914 the first cooling tower was realized by the inventive 
director of the Dutch state mine “Emma” in Treebeek near Heerlen, K. Iterson 
with G. Kuiper [6]. The first generation was 35 m high. From this invention, 
hardly changing the general concept, arose cooling towers of over 200 m height 
throughout the world. By the way, many of these cooling towers are now listed 
to disappear. Interesting is the way the cooling tower, but also Suchov’s grid 
masts, have influenced modern architecture. Ivan Leonidov (1902-1959), a 
visionary architect of the Russian avant-garde, designed a project for the Heavy 
Industry Ministry (1934) in Moscow. Hyperboloid (like) shapes in this project 
occur in a skyscraper, a colorful decorated hall and columns [6]. Like Gaudí, 
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Leonidov was aware of the possibilities of this new geometry and a bridge is 
represented with a parabolic arch. A beautiful minimalist sketch of Leonidov's 
hand shows a stretched hyperboloid. Gaudí designed a small master piece, the 
Colonia Güell church, along the hanging model principle [8]. There he 
discovered the problem of “obliqueness” in optimized stone architecture. When 
structural elements tend to have a non-parallel and non-normal relation with each 
other, a simple geometry is not very useful. His conclusion was to define walls, 
vaults and pillar surfaces generally as ruled surfaces, mostly hyperboloids or 
hyperbolic paraboloids. (In special cases like knots of branching pillars he 
applied ellipsoids and paraboloids for towers.) By simply changing the corner 
coordinates, any shape could quickly be adapted to new static or design 
requirements. In a painstaking but controlled process in the Sagrada Familia 
church (Barcelona, design/building by Gaudí 1884-1926; still under 
construction) Gaudí developed a canonic kind of a new “mediterranean gothic” 
architecture with ruled surface, representing the shapes with gypsum models. 
A rational use of ruled surface shapes shows Gaudí using straight sections in 
neighboring hyperboloids and hyperbolic paraboloids as a common border 
line.  
     Even with the peculiar case of the hyperbolic paraboloid (hypar), one can 
speak of an “innocent” discovery. Gaudí used to say that every wall is crooked in 
some degree, what means that the upper and bottom lines are not parallel and so 
the plane surface is the special case of a hypar. A little known invention was 
made by the medieval monastic order, the Cistercians. The case here referred to 
is Santes Creus in Catalonia, Spain. The hypar shape is used in eightfold in a 
base of the octagon cross tower, matching the space between the square walls of 
the crossing with the octagonal shape of the tower. The simple building method 
was alike that of steps, each next row of ashlar stones turning slightly in the 
horizontal plane. Also in wooden roofs one can find crooked shapes from the 
middle ages. Irregular house plots, typical in old cities, caused quite a problem 
for the technical logical execution of wooden roofs, since either the top line of 
the roof was tilted or at least one of the faces became a hypar.  
     A decisive step to a mature use of hypars is the reinforced concrete shell 
structures by Félix Candela [7]. An elder pioneer of shell structures was Eduardo 
Torroja. The approaches of both were rather different. Whereas Torroja was a 
brilliant mathematician, like his father, the younger Candela was puzzled by the 
complicated calculation methods by Torroja, which resulted in a criss-cross 
layout of reinforcement parts, although the exterior shape looked beautiful 
simple and abstract. Candela found in the ruled surface hypar a shape which was 
rather flexible in its proportions, easy to use in clusters, very rich in expression, 
with borders of either curved or straight line. 
     His use of the hypar shape for shells, allowed him to develop a calculation 
method, in which any point on the shell could be analyzed along two straight 
vector axes which stayed within the hypar shape.  
    A well documented aspect of Le Corbusier, is the double lesson he took from 
Gaudí by the help of Luis Sert: ”the traditional Catalan vault method with thin 
tiles” and the “hypar” [9]. 
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Figure 4: Viollet-le-Duc’s general explanation of a ruled surface; Model of 
an ancient chair type based on a hyperboloid; Wren’s inventive 
proposal using the hyperboloid shape for grinding aspheric lenses; 
Iterson’s cooling tower for the “Emma” mine; Suchov’s (not 
executed) design for the Moscow radio tower in hyperboloid grid 
segments, compared with the lower and yet heavier Eiffel tower; A 
Candela design of hypar shell; Gaudí’s ruled surface roof system 
for the Sagrada Familia School; Leonidov’s sketch interpreting a 
hyperboloid building; Le Corbusier’s Philips Pavilion for the 
World Expo 1958 in Brussels.  
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     Both phenomena are connected since the curved shapes of ruled surfaces are 
rather hard to achieve with conventional brickwork. In Le Corbusier’s own 
development both meant a change from a dogmatic “white cube” era towards an 
organic colorful modern architecture. Le Corbusier used the hyperboloid shape 
of the cooling tower, obliquely snubbed, as an assembly hall in Chandigarh 
(1962, India). Even more interesting may be that he made a rather free use of 
ruled surfaces, thus avoiding acoustical problems of a circular section. For the 
church Saint Pierre in Firminy-Vert (1961-1964) he projected a monumental 
kind of major volume. Photos of a model show his design approach. Between a 
square base and a tilted rounded top plane, strings are attached firmly, so that 
they define the shape which is similar to a snubbed cone. Interesting is the lack 
of respect for correct geometry which Le Corbusier displays here. Geometrically 
sophisticated, under the influence of LC’s collaborator Yannis Xenakis, a Greek 
architect and music composer, is the Philips pavilion. It is a composition of 
hypars, pragmatically mixed with conoids, for the Brussels Expo 1958, of which 
the process towards realization is quite astonishing. Most firms who were asked 
to find a rational and economic solution were puzzled, and their proposals 
reached from a wooden sandwich construction, reinforced concrete, cable strings 
between steel borders (Xenakis). The final execution has a double net of iron 
cables, in between hypar elements of concrete. These hypar elements were 
produced on a sand bedding.  
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