
A linked-data based virtual repository for
disaster management tools and applications

Y. Z. Ou1, S. H. Tsai1, Y. A. Lai1, J. Su1, C. W. Yu1, C. T. Hsiao1,
E. T.-H. Chu2, K. J. Lin3, J. M. Ho1 and J. W. S. Liu1

1Institute of Information Science, Academia Sinica, Taiwan
2Department of Computer Science and Information Engineering,
National Yunlin University of Science and Technology, Taiwan
3Department of Electrical Engineering and Computer Science,
University of California, USA

Abstract

Nowadays, developed regions in the world, including Taiwan, have a wealth of
data and information, which if made available in time for disaster preparedness
and response purposes, can help save lives and minimize damage. With a few
exceptions, however, state-of-the-art data management information systems
(DMIS) available in most countries do not provide adequate support for search,
discovery, access and use of data and information residing in independent
sources across institutional boundaries. This paper describes architecture and
design of a distributed middleware-level framework, called Virtual Repository
(VR), together with functionalities and structures of its key components. By
leveraging linked data and related technologies and tools, VR aims to eliminate
this limitation. Two applications, Mobile Assistant for Disasters (MAD) and
Automatic Disaster Alert System for Tourists (ADAST) are described to
demonstrate the feasibility and effectiveness of VR

Keywords: linked data, disaster preparedness and response, information system.

1 Introduction

In recent years, news, historical records, published statistics and research studies
on past disasters worldwide consistently tell us that data and information needed
to support disaster preparedness and response decisions and operations are critical

Disaster Management and Human Health Risk III 185

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

doi:10.2495/DMAN130171

to our abilities to cope with natural disasters, especially unforeseen catastrophic
calamities. Such information, if made available in time, not only can help save
lives and reduce damages for people affected by disasters, but also can make
emergency response and rescue operations safer and more efficient. Statistics also
show, however, that the positive impacts of information deteriorate rapidly with
time following a disaster [1]. Therefore, making decision support information
easily discoverable and accessible by Emergency Operation Center (EOC),
emergency responders, victims and general public should be a primary design
objective of all disaster management information systems (DMIS)
 Today, this objective is met only partially by DMIS of numerous countries and
regions in the world, including Taiwan and most of Asia. Typical state-of-the-art
DMIS rely mainly on data and information in sources owned by government
agencies responsible for disaster management. As a part of standard operating
procedures (SOP) in preparation for a disaster, likely emergency scenarios are
developed based on prior knowledge on similar disasters and experiences in
dealing with them. When the disaster become imminent, the EOC determines the
data and information needed to deal with the scenarios and has the data retrieved
from available sources and cached on devices, computers and display systems and
thus makes the data ready for use by decision makers and responders during the
emergency. This practice and the DMIS used to support the SOP work
sufficiently well for typhoons, downpours, earthquakes of usual severities, and
other types of emergencies that occur frequently in the region.
 The limitations of current DMIS have become evident time and again in
unforeseen situations, however. In recent years, technologically advanced regions
have a wealth of data beyond what are available in sources contained in the
official DMIS. Some of these data (e.g., structures and surveillance data of
damaged buildings in affected area, locations of people needed help to evacuate,
real-time data on available private and public owned transports, and so on) can be
invaluable when the levels of threat and devastations exceed the prediction. Yet,
typical DMIS offer little or no support to enable timely discovery, access and use
of such data, especially when the data are in sources outside of the official DMIS
and across institutional boundaries.
 This fact has motivated academics and industry, as well as governments of
many countries, to exploit linked data and related technologies [2, 3] for disaster
management. Adding semantics and relations to transform raw data into Linked
Data (LD) not only eases the discovery and use of critically needed data during
emergencies, but also enables the design and implementation of new and more
effective disaster preparedness and response applications. Research projects on
building emergency information system and management infrastructures on
linked data and Linked Open Data (LOD) include the ones described in [4–6].
Tools provide by projects such as LOD2 [7] and SMILE [8] can help to reduce
the effort and speed up the development of linked-data enabled DMIS and disaster
management applications.
 Building on this momentum, we proposed in a previous paper [9] architecture
and design of a middleware-level framework called virtual repository (VR) for
LD-based disaster preparedness and emergency response applications. Despite

186 Disaster Management and Human Health Risk III

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

their commonly acknowledged advantages, adoption of LD and LOD within
disaster management IT infrastructures has been slow. A reason is the enormous
amounts of resources and efforts required to enhance existing DMIS with
semantics and links [10] in anticipation of future needs. The virtual repository
framework addresses this concern by offering applications with similar data
requirements an extensible repository in which Universal Resource Identifiers
(URIs) and links can be created from existing data sets on demand as needs for
them arises. (When there is no possibility of ambiguity, we also call such a
repository a VR.) In addition to supporting run-time access of linked data, each
VR comes with tools using which the developers of the applications supported by
the VR can easily create new linked data and maintain existing ones as the
applications and data sources served by the repository evolve.
 We describe in this paper the functionalities, structures and implementations of
key components of a typical VR. Following this introduction, Section 2 further
motivates the VR framework and its design rationales with the help of two
applications, Mobile Assistant for Disasters (MAD) and Automatic Disaster Alert
System for Tourists (ADAST). These applications share a VR. They were
presented in [9] as case studies. Section 3 describes the VR architecture and
implementation from application development perspective. Section 4 describes in
detail VR components. Section 5 discusses our future work.

2 Motivation and rationales

Again, we use MAD and ADAST to help us explain the reasons for using LD,
LOD and VR framework. We also use them to explain the functionalities required
of the VR to support the development and use of these and similar applications.

2.1 To support development of work-anywhere applications

MAD is an application system designed to help the general public access and
download to mobile devices information on where to go and what to do when a
major disaster strikes so that they can carry the information with them during the
emergency. Such information includes nearby buildings designated as public
shelters, parks with portable water and food, emergency medical care centers, and
so on. Many city and township governments in the world (including Taipei, San
Francisco, and London [11–13]) have made this kind of information available on-
line. So, it should be straightforward for applications such as MAD to retrieve the
information using the open interfaces and API functions of the local web services
and databases. Indeed, this is what the alpha version of MAD does.
 Specifically, the proof-of-concept prototype MAD v0.5 serves only people in
Taipei city. The application system has a client-server structure. As its name
indicates, MAD clients are applications running on mobile devices commonly
used by general public every day. One (or more) interface server (IS) retrieves
from Taipei OpenData [12] disaster preparedness information for general public
in the city, periodically during normal times and upon notification by alert
authorities. The IS then partitions the data into location-specific subsets, each for

Disaster Management and Human Health Risk III 187

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

a district of the city, and distributes the subsets pervasively to point-of-service
(POS) servers running on computers and devices contributed by businesses (e.g.,
convenience stores and cafes) and organizations (e.g., schools and companies)
within the districts. In this way, MAD makes the critically needed data highly
available and downloadable to mobile clients via local connections when Internet
and phone connections are disrupted.
 MAD v0.5 allowed us to demonstrate the functionalities and usability of MAD
but falls short on the maintainability and extensibility. A reason arises from the
fact that information consumers targeted by sources such as Taipei OpenData are
people, not programs. Often, inconsistencies in naming schemes and data schemas
cross different domains have not been carefully eliminated. As an example, in
Taipei OpenData, “property name” of a sports center and “organization name” of
a hospital both refer to names of the respective facilities. Human can easily
process this information despite the difference, but not programs. We solved this
problem in MAD v0.5 by using brute-force, hand-coded mappings. As expected,
MAD v0.5 is hard to maintain as these mappings must be updated when schemas
of the data source(s) change.
 We want future versions of MAD to be a work-anywhere service. In particular,
the client component of MAD, once installed on a mobile device, can access and
download local disaster preparedness information wherever such information and
MAD service are available. Our current goal is to demonstrate that MAD 1.0
work in representative cities including Taipei, London and Tokyo. A way to
accomplish this goal is to have MAD servers and clients work with a common
data model and format regardless the data models, schemas and views of available
local information sources. Resource Description Framework (RDF) [10] is a
natural choice for this purpose: Translation tools such as the ones provided by
LOD2 [7] can ease the effort of translating the structures and semantics of legacy
data schemas into a RDF format. With data objects and resources named by their
URIs, the problem due to multiple aliases for the same object or different objects
with the same or similar names is eliminated.
 An important advantage of the RDF model and associated formats over other
choices of common data models, schemas and formats is that RDF enables us to
link not only data sets retrieved by MAD from sources used by the system but
also with data sets from external sources that support linked data. In places where
local sources have linked open data (e.g., in numerous cities in the US and EU),
MAD can easily discover and retrieve disaster preparedness data in a RDF format
from the sources and directly forward the data to its mobile clients. At locations
where the local sources do not have linked data (e.g., in Taipei) and may not even
have open data (e.g., in many cities in Asia), MAD IS uses API functions, web
crawlers and translation tools to retrieve the required disaster preparedness data,
translate and store the data in RDF format. We advocate here that the linked data
thus generated by MAD and similar applications be kept in a common triple store
provided by a middleware so that the applications can share the data and the effort
spent to create the links is amortized. In addition to space in the triple store, the
middleware also provides supporting tools for the generation and use of linked

188 Disaster Management and Human Health Risk III

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

data in the triple store, sources with linked data and legacy sources without linked
data. This middleware is what we call a virtual repository (VR).

2.2 To enable discovery and effective use of data in independent sources

While the RDF model and format(s) are a design choice of internal data for
applications such as MAD, they are essential for applications that must be able
discover and access as soon as possible data from sources not contained in the
official DMIS. ADAST is such an application: In response to an alert declared by
a responsible authority (e.g., the Central Weather Bureau) warning of an
imminent calamitous event (e.g., a severe storm and possible landslides), ADAST
proactively notifies people in the affected areas specified by the alert. When the
threatened areas include popular national parks, the application must reach not
only local residents, but also tourists. The data required for this purpose are likely
to be in sources maintained by multiple government agencies and companies. (For
example, real-time data on numbers and locations of tourist groups are likely to be
in databases maintained by Tourism Bureaus and tour companies.)
 The VR serving this and similar applications should provide at least semantics
on and links to data critical for the applications to meet their minimal
requirements. In the case of ADAST, a minimal requirement is that the contact
persons of all tour companies operating in the park(s) and park ranger stations are
notified. Hence, a use scenario of the VR is that semantics and links to data on
these entities are created and maintained in the storage of the VR during the
design and development process of the application. For the same reason,
applications designed to support rescue and evacuation operations need data on
rescue equipment, hospital and emergency care facilities, and so on in the affected
area. Providing the applications and their developers with tools to discover, link
and cache such data is a function of the VR serving the applications.
 In addition to the basic functions mentioned above, the VR also provides
event-notification support. With a few exceptions, sources in and out of official
DMIS are passive or interactive databases, sensor webs, web services, etc.
Without help, a proactive application such as ADAST must poll their contents and
pull from them data on recently posted disaster alerts and specifics about each
alert. Having the VR do this work on behalf of all the applications served by it is a
way to amortize the associate overhead and thus keep the overhead low. We are
developing an Intelligent Active Storage Service (IASS) [14]: This component of
the VR will provide applications requesting its service with the capability of
monitoring events and conditions defined by the applications in terms of values of
data in specified sources and the VR triple store and respond to the occurrences of
a event/condition by pushing notifications to designated applications and end-
users in ways specified by the applications. By doing so, IASS will turn existing
pull-based data sources in part into push-based reactive/active sources.
 The version of the VR described in subsequent sections has a simplified
IASS, called client subscribe and notification services. To avail itself of the
services, ADAST first register itself with the services and specifies in its request-
for-service the types of disaster alerts (e.g., typhoon, earthquake, debris flows
and downpour) about which it wants to be notified and the maximum allowable

Disaster Management and Human Health Risk III 189

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

delay in notification for each type of alert. These services monitor the authorized
information sources where the specified types of alerts and warnings are posted
(or published) and notify ADAST when a specified alert is found (or received).
Details on the structure, components and operations of ADAST are omitted since
they are unimportant to our discussion here and can be found in [9].

3 Structure and design of virtual repository

Figure 1 illustrates the relation between a VR, its client applications (i.e., the
applications served by the VR) and client (data) sources (i.e., data sources used
by one or more client applications): The middle of the figure depicts the structure
and components of a VR, which we will describe shortly. The dashed boxes on
the top and bottom of the figure enclose its client applications (including MAD
and ADAST as examples) and data sources, respectively. The vertical box in the
right of the figure shows the generic interfaces such as HTTP GET/POST
protocol that enable applications and sources to communicate with tools and
components inside the VR.

Figure 1: Structure of virtual repository.

 In essence, a VR provides its client applications with a development and run-
time support environment: By using the tools and processes provided by the VR, a
user (i.e., a client application and/or its developer) can create and add as needed
semantics and links for parts or all of the data in each source used by the

Sources
with LOD

Official DMIS
Databases

Open Data
Sources

Scientific
Databases

Other
Sources

MAD ADAST Rescue Op.
Support

Other
Applications

C3
Support

In
te

rf
ac

es
 fo

r
H

T
T

P
 G

E
T

,
H

T
T

P
 P

U
T

, F
T

P
,

P
U

B
/S

U
B

,
et

c.

External
Ontology

Set
External

Ontologies

Interface

Web Service Interfaces Others…Others…Other
Interfaces

SPARQL Clients

VR
Core

VR
Tools

Translation Tools :
Xquery, D2RQ, etc

Others
…

Others
…Others

Indexers for Different
Data Types

VR Interface

Data Validation and
Update Modules

Client Subscription and
Notification Services

URI Search and
Management ServicesInternal Vocabularies

Index Triples

Cached Data Triples

Cached Link Triples

Triple Store

190 Disaster Management and Human Health Risk III

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

application and selectively cache and publish the resultant links and LD to a
shared common store and thus make them available to other applications.

3.1 Interface and tool layers

As we can see from Figure 1, VR has a layered structure: interface(s) on the top
level, VR Core on the middle level and VR Tools on the bottom level. A VR-
enabled client application can access data on links, linked data and tools provided
by the VR, as well as data in client sources, via a variety of interfaces, including
web service interfaces, SPARQL [15] endpoint, etc. The query language used
internal to the VR is SPARQL, using which linked data can be queried in ways
similar to querying a large database [16]. The VR Interface layer translates all
user queries into SPARQL queries and sends the queries to retrieve the required
information. In this way, each client application can query the VR with condition
specified in SPARQL and set up the returned format or returned information
displayed in its own way.
 At the backend, the VR Tool layer makes available tools to translate raw data
in common exchange formats (including XML, JSON and KML) and data record
formats (including XLS and CSV) to linked data in the RDF N-triple format,
refereed to simply as triples in Figure 1. Currently, translation tools offered by the
VR Tool layer include XQuery [17] and D2RQ [18]. The former can be used to
translate XML file to linked data, and the latter can be used to access a relational
database as a RDF graph. The tool layer has a recommendation table. Using the
table, developers can recommend other existing translation tools to be added the
VR tool library or suggest missing tools to be designed and built in the future.
 The contents of many files, including media files in formats such as JPEG,
TIFF, AVI, MP3, etc. cannot be represented in a RDF format. The Indexers
shown in Figure 1 are tools for building indexes for these files based on their
metadata and/or user specified contents. The resultant indexes are in RDF N-triple
format and stored as shown in the figure.

3.2 VR Core layer

VR Core is the essence of virtual repository: It provides the resources and
functions needed to support the VR Interface to client applications and VR Tools
for the underlying data sources. The layer is composed of storage components and
functional components. The important ones are depicted within the darkened
rectangle in the middle of Figure 1.
 Before moving on to describe individual components, we note that as the name
Virtual Repository implies, VR provides a storage system for information and
data. This component is called Triple Store. Depending on the client applications,
parts or all of the data links or linked data generated by the VR tools are stored
and kept up to date in Triple Store. An application can treat Triple Store as a
virtual storage, sending all of its requests and dealing with returned data as if all
the data are in the component: The fact that some of data are stored only on the
original data sources is hidden from such an application.

Disaster Management and Human Health Risk III 191

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

 Client applications can also choose to be unaware of the fact that Triple Store
is physically distributed. The middleware places links and LD maintained within
the VR core on multiple servers, some of which are physically outside of the areas
threatened by the current calamity or in a highly available cloud, so that they
remain available and accessible even when the data sources are damaged by the
disaster. Some client applications (e.g., MAD) may store their LD pervasively on
computers and devices chosen by them. This is a way to reduce the bandwidth
and increase the availability of connections required to support end-user access to
data. However, these data, unless duplicated in Triple Store, are not accessible by
other client applications. Due to space limitation, we defer discussions on
achievable availability, responsiveness and other quality of service attributes of
alternative distributed configurations of the VR storage to a future paper.

4 Key VR Core components

Again, VR Core has two types of components: storage components and functional
components. We now describe the ones shown in Figure 1.

4.1 Storage components

As Figure 1 shows, Triple Store contains at least four types of data: Cached Data
Triples, Cached Link Triples, Index Triples and VR Internal Vocabularies. VR
provides a space for optionally caching the linked data generated by the
translation processes. So, when translating selected data from client sources into
RDF triples, a user (i.e., an application or its developer) can choose to store the
resultant triples in Triple Store. They are called Cached Data Triples, or simply
data triples here. When a user searches data through the VR Interface, VR returns
cached triples if they are in Triple Store, instead of assisting the user to find and
access the raw data from client sources and translate the raw data to linked data
again. Addition to saving the time and overheads of repeated translation, cached
triples provide backup and enhance the availability of critical data.
 In contrast to data triples, the user may choose to store only the link triples
generated during translation. These triples provide the applications with
connections to data triples within the VR and in external knowledge bases.
 An index triple was generated by an indexer tool to mark a file based on the
metadata of the file and/or data specified by the user. A file may have multiple
index triples. As an example, let us consider a file containing a video of the terrain
and landscape of a highly unstable mountain area shot by an unmanned aircraft
before typhoon season as a part of disaster preparedness SOP. The metadata of
this video include basic file information such as size and format of the file;
geological information (including the location, coordinates, size and type of
terrain of the area); weather and operation conditions (e.g., operator, purpose,
goal, observed event, analysis report) and so on. These types of metadata are
formatted into RDF triples. The resultant linked data on the file enable the file to
be found more easily. Depending on the user’s choice, the file itself may or may
not be cached by the VR.

192 Disaster Management and Human Health Risk III

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

 An important part of Triple Store is VR Internal Vocabularies, or Internal
Ontology. Today, numerous ontologies, including DBpedia [19] and SUMO [20],
are available. They define and provide representation of concepts and objects
(entities) and relationship among them in diverse domains. Figure 1 calls them
collectively external ontologies. VR makes use of them as much as possible. The
VR Internal Ontology includes only the terms that are required by some client
applications but cannot be found or are not defined appropriately in any of the
commonly used external ontologies. As an example, when a user uses VR
translation tools to translate information on shelters in a city to linked data, a URI
is needed to represent the street name part of the address of a shelter. If the user
cannot find an existing URI to represent the street, he/she creates an URI of the
street and stores the new URI in Triple Store as a VR internal vocabulary with the
help from the URI Management Service.
 Some or all of the VR internal vocabularies may be valuable to web ontology
communities or developers. For this reason, VR also provides a GUI and API
functions using which ontology developers can access the vocabularies and
evaluate them.

4.2 Functional components

The right part of the rectangle in the middle of Figure 1 encircles some of the
functional components provided by the VR Core for both internal and external
use. Earlier, we have already mentioned Client Subscription and Notification
Services, hereafter, referred to as CSS and CNS, respectively. These services
enable client applications and sources to publish and subscribe information to
each other. VR provides a web UI and an API function, using which a user can
register with CSS as a subscriber, providing the service with specifications of the
required data, designated applications and end-users to notify and one or more
trigger conditions. When CNS detects a condition in the trigger condition list is
met, it retrieves the required data and sends the data as a notification to the
subscriber and designated client applications or end-users. With CSS and CNS,
client applications do not need to periodically check the data in VR to see whether
the data have been updated. Instead, the applications can check the data once they
receive notifications from CNS telling them that subscribed data is updated.
 Data Validation and Update Modules (simply called DVM and DUM,
respectively) are also key components of VR core. For data stored in Triple Store,
DVM is responsible for validating the consistency of internal data with external
data stored in the original sources. When a user decides to store the RDF data of
the client application in Triple Store, the user specifies a valid (time) interval, or
simply valid time, for each triple or set of related triples. A triple is considered
expired and hence invalid when time elapses beyond its valid interval. As an
example of where this is important, we note that a client application such as
ADAST must examine the date or valid time interval of each alert. If the alert has
already expired, it should not take any action as a response to the alert.
 In addition to specifying a valid time interval for stored triples or sets of
triples, a user may also provide parameters specifying when to update or not to
update when the data is no longer valid. DUM updates the store data in VR based

Disaster Management and Human Health Risk III 193

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

on the policy defined by such user-specified parameters and in the absence of
parameters specifying otherwise, update the data by default.
 The bottom box in the VR tool stack depicts URI Search and Management
Services, called USS and UMS respectively. The former is provided to assist the
users in their search for URIs, while the latter helps to manage (i.e., add, delete,
and modify) internal URIs.
 During a translation process, when a URI is needed to represent a term, the
user (or a translator program) can use USS to search external ontologies for
possible choices. USS provides the user with a UI and an API function for this
purpose. Once USS receives a searched term via the UI or API function, the tool
connects to existing ontologies in turn, queries each of them for URIs based on
the search term and integrates URIs from the search into a list as the result of the
search. In this way, USS enables the user to treat all external ontologies as a
single source and thus avoid the need to search them individually manually.
 After receiving a URI list from USS, a user can select a URI from the list to
represent the term for which the search was performed. When none of the existing
URIs in the list is inappropriate for a term, UMS assists the user to create and
manage a new URI. UMS is part of the interface of VR Internal Vocabularies.
Every term created by UMS is stored in the VR Internal Vocabularies. UMS
allows both manual and automatic addition of new URIs. Specifically, the GUI of
UMS lets ontology developers to manually classify and store new URIs offline.
UMS also provides API functions using which a client application can request
automatic addition of one or more URIs into VR Internal Vocabularies. Both USS
and UMS work with VR Translation tools and Indexer.

5 Summary and future work

This paper describes the structure of a virtual repository (VR) designed to present
to its client applications and users linked-data views of data contained in one or
more sources that may or may not support linked data. Serving as a single data
source, a VR enables its clients to be benefited from linked data despite their use
of legacy databases and web services. The resources, tools and services made
available by the VR aim to ease the tasks of transforming raw data from client
data sources into linked data. In this way, the VR serves developers as a
component of a development environment for the implementation of linked data
enabled applications for disaster preparedness and response.
 Specifically, previous sections described the three-level structure of VR. The
top level is the VR Interface that enables applications or users to query for
required information from the VR using commonly used interfaces. The middle
level VR is composed of storage components and functional components. The
storage components form a virtual repository of links and cached linked data. The
functional components provide services including event notification, data
management, URI management, etc. At the bottom level, VR tools assist the
translation of raw data from client sources into linked data.
 Much work remains to be done. Existing open sources tools and components
gave the VR effort a running start. In the process of extending VR tool library and

194 Disaster Management and Human Health Risk III

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

key components and completing a fully functional VR prototype, we will produce
new tools and components and contribute them to the open source resource pool.
Examples include the growing collection of URIs representing disaster
preparedness and response concepts and objects in VR Internal Vocabularies, as
well as functional components that support the VR services presented earlier.
 In addition to MAD and ADAST, we plan to develop as case studies other
representative disaster preparedness and early response applications that share a
VR. They are needed, in addition to the VR prototype, for the purposes of
demonstrating convincingly the merits and effectiveness of the VR approach to
design and development of linked-data enabled applications and services.
 We mentioned earlier that we will enhance CSS and CNS, redesigned them if
needed, in order to turn them into an intelligent active storage service and a VR
into an active/reactive information system. Until now, we have made ad hoc
architectural choices for the distributed Triple Store. Now that the design and
implementation of the prototype is well underway, we will begin to flesh out the
alternative choices of distributing the contents of the Triple Store on available VR
system resources and client data sources and evaluate their relative merits in terms
of quality of services parameters such as data availability and responsiveness.

Acknowledgements

This work was supported by the Academia Sinica thematic project OpenISDM.
The authors wish to thank Wen-Ray Su, I-Liang Shih, Shang-Yu Wu of Taiwan
National Research Center for Disaster Reduction (NCDR) and many Co-PIs of
project OpenISDM for their critiques and suggestions on this work.

References

[1] Murphy, R. R., A national initiative in emergency informatics. Computing
Community Consortium, 2010.

[2] Bizer, C., Heath, T., & Berners-Lee, T., Linked data-the story so far.
International Journal on Semantic Web and Information Systems
(IJSWIS), 5(3), 1-22, 2009.

[3] Bauer, F., & Kaltenböck, M., Linked Open Data: The Essentials, 2011
[4] Borges, M. R., de Faria Cordeiro, K., Campos, M. L. M., & Marino, T.

Linked Open Data and the Design of Information Infrastructure for
Emergency Management Systems.

[5] Silva, T., Wuwongse, V., & Sharma, H. N. Disaster mitigation and
preparedness using linked open data. Journal of Ambient Intelligence and
Humanized Computing, 1-12.

[6] Schulz, A., et al., Integrating process management and LOD to improve
decision making in disaster management.

[7] LOD2 Project, http://lod2.eu/WikiArticle/Project.html
[8] SIMILE Project, http://simile.mit.edu/
[9] Lai, Y. A., Ou, Y. Z., Su, J., Tsai, S. H., Yu, C. W., Cheng, D., Virtual

disaster management information repository and applications based on

Disaster Management and Human Health Risk III 195

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

linked open data, IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), pp.1-5, 17-19 Dec. 2012.

[10] Berners-Lee, T., Design issues: Linked Data, http://www.w3.org/
DesignIssues /LinkedData.html

[11] Open data sites, http://www.data.gov/opendatasites
[12] OpenData.tw, http://www.opendata.tw/gov-data/tpe-od-platform/
[13] Sheridan, J. and J. Tennison, “Linking UK government data,” Linked Data

on Web Workshop, 2010.
[14] Lee, C. R., Y.Z. Ou, C.W. Yu, S.H. Tsai, F.R. Chern, J.W.S. Liu., IASS:

Intelligent Active Storage System, Work-in-Progress Presentation at
RITMAN Workshop, co-located with SOCA, Dec. 2012.

[15] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-
query/

[16] Feigenbaum, L. 2008, Why SPARQL?, http://www.thefigtrees.net/lee/blog
/2008/01/why_sparql.html

[17] XQuery 1.0: An XML Query Language (Second Edition),
http://www.w3.org/TR/xquery/

[18] D2RQ, http://d2rq.org/
[19] DBpedia, http://dbpedia.org/About
[20] Suggested Upper Merged Ontology (SUMO), http://www.ontology

portal.org/
[21] OpenISDM Project, http;//openisdm.iis.sinica.edu.tw/

196 Disaster Management and Human Health Risk III

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 133, © 2013 WIT Press

