
A method for building desktop software
automated update systems

D. Sitnikov1, A. Sitnikov2 & O. Ryabov3
1Kharkov State Academy of Culture, Ukraine
2Kharkov National University of Radio Electronics, Ukraine
3National Institute of Advanced Industrial Science and Technology,
Japan

Abstract

One of the problems in modern software development is the problem of
introducing changes and fixes to the deployed software products in an automated
fashion thus not requiring the end user to download the redundant product
modules that had not been changed and performing manually the
uninstall/install/check sequence. In this paper a method for building an
automated update system has been suggested. The automated update system
guarantees that the end user receives the latest changes and fixes to the product
thus maintaining smooth experience from the software product. In this paper one
of the methods for implementation of an automatic software update system for
desktop applications is considered.

1 Introduction

In June 1998 Microsoft released a new operating system in which a new module
responsible for notifying the user on the possibility of downloading some system
add-ons such as new desktop themes, device driver updates, games and
additional elements like NetMeeting was included. In the beginning Windows
Update was accessible only from browsers and contained mainly operating
system updates and new software in its repository. However crucial updates for
software and the operating system kernel were later published through the same
system. Microsoft connects the successful sales of Windows 98 in particular with
inclusion of the module Windows Update [1].

Data Management and Security 105

 www.witpress.com, ISSN 1743-35 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17
doi:10.2495/DATA130101

 Really the process of updating modern software not only leads to improving
user experience but also has unprecedented importance for safety and security of
the system work as a whole. For instance, in case of appearing a new exploit for
software the producer can quickly correct errors in the application and minimize
the resulting damage.
 Modern Agile methodologies for developing software such as eXtreme
Programming, Lean, Scrum and others suggest an approach that differs from the
traditional one. This approach requires the end user participation in the
development process. In the projects using the Agile methodology user reaction
is very important and, thus, the role of an automatic update system for such
projects can hardly be overestimated.
 Automated software updating plays an important part not only in desktop
applications but also in Web applications.

2 Description of existing systems

As examples of applications using automated update systems one can consider
the browsers Mozilla Firefox, Google Chrome, Internet Explorer, mail client
Mozilla Thunderbird, Microsoft Office package, the developer environment Java
Development Kit, Java Runtime Environment and many others. Thus at present
using AUS (Automatic Update Systems) can be considered as a standard de
facto.
 In the applications market at present there is a trend towards the consolidation
of sources for software distribution in specialized “markets”. As examples one
can consider Apple iTunes that can work on the mobile platform iOS and on the
desktop platform MacOS as well. Also Google Android and Windows Phone
have a similar system. In Microsoft Windows 8 the application Microsoft Market
is built in by default. All these systems imply by default the possibility of
updating software being distributed.

3 Requirements to Software AUS

We think that a modern software AUS should meet the following requirements:

 Safety
 Sustainability if case of unexpected errors
 Scalability
 Modularity
 Extendibility
 Integration into development process

4 The development process and AUS

In a simple way the process of developing a modern software application
includes the following stages:

106 Data Management and Security

 www.witpress.com, ISSN 1743-35 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17

1. Application requirements analysis.
2. Creating specifications for modules being developed/changed.
3. Writing a program code.
4. Generating a test version of an application.
5. Testing assembly from step 4.
6. Correcting errors and if necessary returning to step 3.
7. Generating a final assembly.
8. Distribution of the assembly from step 7 to the end user environment.
9. Gathering and consolidation of information on discovered errors and user

feedback; returning to step 1 or step 3.

 In this paper we consider only steps 7 and 8.
 As a whole AUS consists of two main parts: client module that directly
updates an application and server application that stores packages with updates
and the current application version.

5 A description of our approach

In our opinion the development process should include “seamless” integration of
software AUS. In other words update packages creation should be performed
without direct involvement of the user.
 Below consider the main stages for process of creating an update package for
an application.

1. A responsible person launches the process of generating the final
application assembly on the CI server.

2. Obtaining information on the last successful application assembly.
3. Determining the necessity of assembling a client automated update

system module.
4. Downloading the last application revision from the version control system
5. Determining application modules that have been changed.
6. Calculating the assembly version number.
7. Composing a list of changes based on information from the version

control system.
8. Modification of auxiliary files storing version information for modules

discovered in step 5.
9. Assembling and signing all application modules with a company

certificate private key.
10. Creating and signing an update package with company certificate private

key.
11. Creating a file with the help of which the client module determines the

necessity of updating the application (further it is called “indication file”).
12. Creating an installation package.
13. Loading the resulting files to the update server.

 Let us consider some elements of this process in more detail.

Data Management and Security 107

 www.witpress.com, ISSN 1743-35 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17

6 Launching the process of generating a final application

We think that for errorless assembly of a final application the company should
use the methodology of so called continuous integration (CI). Thus in the process
of generating the resulting application the human influence can be minimized. It
can be seen especially well in the process of developing software consisting of a
set of heterogeneous modules. Normally the application assembly process is
described in the form of so called assembly plan that has some coded name for
facilitating its identification on the stage of log analysis.
 At present there exist a variety of commercial and free solutions. The
following products can be considered as special examples: Atlassian Bamboo
and JetBrains TeamCity that allows configuring and controlling the process of
assembly in a special visual editor. In spite of the fact that when mentioning CI a
particular software product is meant, in principle the company can use this
methodology entirely with the help of standard tools provided along with the
development environment and operating system.
 The company’s responsible person making decisions on release of a new
application version uses the CI server interface for launching the application
assembly plan and supervises the process by using a log viewing system. In case
of assembly errors a message with a detailed description of the error and link to
the full log of assembly process is sent to the e-mail addresses of team persons
responsible for application development. In case of a successfully completed
process the responsible person synchronizes artifacts of the assembly
(installation packages, update packages, indication file) with the production
server from which applications can be automatically updated.

7 AUS server module

The general structure of the server module looks as follows:

1. Catalogue latest. This file contains all application modules in the
original form.

2. Files *.zdef. Such files contain scenarios for updating each preceding
version. For example file 2115-2111.zdef stores a scenario of
application updates from version 2.1.1.1 to versions 2.1.1.5. Files are
packed in the Zip format.

3. relnotes.txt. This file contains messages sent when files are committed
in the version control system.

4. update.info. This is an indication file for the client module AUS. It
looks as follows:

<UpdateInfo>
 <Self Hash="SHA256 HASH"/>
 <ProductVersion="2.1.1.10" MainExecutable="App.exe"/>
</UpdateInfo>

108 Data Management and Security

 www.witpress.com, ISSN 1743-35 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17

The above element Self contains SHA256 hash from a client module
file AUS. This hash allows the client module of AUS to determine if
there is a need in updating itself. The element Product stores
information on the actual version of the application and its main
executable file.

5. Updater.exe. The last actual version of the client module.

8 Update scenario format

In the process of its work the CI server generates separate update scenarios for
each preceding application version. For example, if the first application version
was 2.1.1.1 then in case of generating applications with version 2.1.1.5 the
following scenarios will be created:

2.1.1.1 -> 2.1.1.5
2.1.1.2 -> 2.1.1.5
2.1.1.3 -> 2.1.1.5
2.1.1.4 -> 2.1.1.5

 Thus the minimization of company server outgoing traffic is performed since
during the update process not all application modules are downloaded but only
changed parts of some modules. A typical scenario file looks for example as
follows:

<?xml version="1.0"?>
<UpdateDefinition>
 <Scenario>
 <Pre />
 <Post />
 <Actions>
 <UpdateFile HashBefore="SHA256 Hash" HashAfter="SHA256 Hash"

Path="path to file">VCDIFF in Base64</UpdateFile>
 ...
 ...
 </Actions>
 </Scenario>
 <Signature ...
</UpdateDefinition>

 The changes to the particular software module is introduced with the help of
format of delta encoding described in RFC 3284 called VCDIFF [2]. The binary
delta file is then encoded using BASE64 scheme that allows to use it directly in
the XML file.
 Various actions built in the client module can be indicated as Action, such as
registry operations, launching programs etc.
 The Signature element is a scenario digital signature and added after all other
elements at a corresponding stage.

Data Management and Security 109

 www.witpress.com, ISSN 1743-35 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17

9 AUS Client module

This module is designated for tracking new application version appearance and
direct changing application modules according to a corresponding update
package scenario.
 A client module is launched in separate thread at application start-up and
passes the following steps in the process of its working:
1. Self-Maintenance. At this stage the actuality of the client module itself is

checked. Thus self-updating mechanism is implemented. In case a new
version is accessible it is loaded and the corresponding file is replaced. The
updated version fulfills all further operations.

2. Check Updater Hash. This step allows determining whether or not the last
version of the client module AUS has been damaged during the download
process. If the hashes are not equal it is not possible to update the
application.

3. Download Update Definition. During this step the corresponding update
scenario is downloaded.

4. Check Definition Signature. The client module is to confirm the validity of
the scenario signature with the public company key which is distributed
along with it. In the case of check failure it is not possible to continue the
process of updating.

5. Check File Hashes. At this stage the unpacking of diff-files from the update
scenario and checking their hashes are fulfilled. In case of check failure the
update process should be stopped.

6. Perform Pre Actions. If the scenario contains any preliminary actions that
should be performed before updating application modules such actions are
fulfilled at this stage.

7. Update Core Libraries. Here direct updating application files with the help
of scenario diff-files is performed.

8. Perform Post Actions. In case the scenario contains actions that should be
performed after updating application modules such actions are fulfilled at
this stage.

9. Clean-Up. Temporary files are deleted.
10. Start The Program Up. The main application file defined in the indication

file is started.

10 Processing update errors

The most common error types are as follows:

1. Security errors.
2. Network connection errors.
3. Data integrity errors.

 The first two types do not suppose any special processing except for
indicating errors to the user and asking the user to try launching the update later

110 Data Management and Security

 www.witpress.com, ISSN 1743-35 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17

or call support. In the case the file hash does not equal the expected one the
client module requests the latest version of the corresponding file on the server
(catalogue “latest”) and replaces the original file completely (not only the
changed part).

11 Conclusions and future work

The suggested method for developing an automated software update system for
desktop applications allows the business to concentrate its efforts on continually
improving the software quality and provide smooth and error-prone user
experience to the end users.
 One of the major improvements for the suggested method would be the
inclusion of the mechanism for dealing with security certificates expiration.
Additionally, there is some room for improvement within the update format that
can be replaced with pure binary one to reduce packet size.
 The system based on the described method is currently being used in one of
the leading driver updates software products Xionix DriverHound [3].

References

[1] Strong Holiday Sales Make Windows 98 Best-Selling Software of 1998
http://www.microsoft.com/en-us/news/press/1999/feb99/holislpr.aspx

[2] The VCDIFF Generic Differencing and Compression Data Format
(http://tools.ietf.org/html/rfc3284.html)

[3] Xionix DriverHound http://xionix.com/products/driverhound/

Data Management and Security 111

 www.witpress.com, ISSN 1743-35 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17

