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Abstract

Discrete Wavelet Transform has proved to be powerful for image compression
because it is able to compact frequency and spatial localization of image energy
into a small fraction of coefficients. For a long time it was assumed that there is no
compression gain when coding the sign of wavelet coefficients. However, several
attempts were carried out and several image encoders like JPEG 2000 include sign
coding capabilities. In this paper, we analyze the convenience of including sign
coding techniques in tree-based wavelet image encoders, showing their benefits
(bit-rate saving). In order to exploit the scarce redundancy of wavelet coefficients
sign, we propose the use of machine learning approaches, like evolutionary
algorithms, to find the best sign prediction scheme that maximizes the resulting
compression rate. We have developed a sign prediction module based on the results
provided by the evolutionary algorithms, which it is able to work with whatever
the tree-based wavelet encoder like SPIHT, LTW, and others. After performing
several experiments, we have observed that, by including the proposed sign coding
capabilities, the sign compression gain is up to 17%. These results show that sign
coding techniques are of interest for improving compression rate, especially when
working with large images (2 Mpixel and beyond) at low compression rates (high
quality).

1 Introduction

In this work we are looking for optimal/suboptimal solutions of sign coding in
image compressors that are based in the use of the Discrete Wavelet Transform
(DWT). Wavelet transforms have been widely used, since many state-of-the-art
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image codecs, including the JPEG2000 standard [17], employ DWT into their
algorithms. One advantage of the wavelet transform is the provision of both
frequency and spatial localization of image energy. The image energy is compacted
into a small fraction of the transform coefficients and compression can be achieved
by coding these coefficients. The energy of a wavelet transform coefficient is
restricted to non-negative real numbers, but the coefficients themselves are not,
and they are defined by both a magnitude and a sign. A transform coefficient is
equally likely to be positive or negative and thus one bit should be used to encode
the sign, as Shapiro stated in [16]. In recent years, several authors have begun to
use context modeling for wavelet sign coding [5, 17, 19], showing that despite the
equiprobability of wavelet sign values, some sign correlation can be found among
wavelet coefficients, resulting in overall compression ratio improvements.

In a previous work [10] we have observed that the sign of a wavelet coefficient
may be strongly correlated with the sign of some neighbor coefficients. However,
this relationship is not uniform and constant for any image, or even consistent
within the same image. Thus, although a careful analysis for the target image
could be done in order to get the most accurate sign relationships and therefore
better sign prediction and improved compression rates, these sign relationships
would be only useful for this image. By increasing the number and kind of images
under analysis, the relationship between the signs of the neighbor coefficients may
be generalized.

Genetic algorithms (GA) were first introduced by Holland in [8] and they are
nowadays well known techniques for finding nearly optimal solutions of very
large problems and also, they have been used in image processing [1, 3]. In a
genetic algorithm, the evolution usually starts from a population of randomly
generated individuals and happens in generations. In each generation, the fitness
of every individual in the population is evaluated by means of a cost function
that determines the optimal degree we are looking for (i.e compression rate).
Multiple individuals are stochastically selected from the current population (based
on their fitness), and modified (recombined and possibly randomly mutated) to
form a new population. The new population is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when either a maximum number
of generations has been produced, or a satisfactory fitness level has been reached
for the population.

In this paper we evaluate our sign coding technique proposal based on the use
of genetic algorithms. We developed a genetic algorithm that will find the best
sign prediction. It will work with a large set of test images in order to obtain a
good sign prediction that be image independent. The evaluation will be performed
over a non-embedded wavelet base encoder called LTW [13], showing the benefits
of minimizing the entropy of sign information resulting from the sign prediction
coding process.

The rest of the paper is organized as follows: Section 2 describes our context-
based sign coding framework and introduces a brief description about genetic
algorithms and their application to sign coding prediction. In Section 3, we show

38  Data Management and Security

 
 www.witpress.com, ISSN 1743-35  (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17



the results of the proposed sign coding technique and its impact over the global
encoder performance. Finally, in Section 4 some conclusions are drawn.

2 Context-based sign coding approach

Most wavelet image codecs do not consider the use of sign coding techniques since
the wavelet coefficients located at the high frequency subbands form a zero-mean
process, and therefore they are equally likely positive as negative.

Schwartz et al. [15] were the first authors to consider wavelet coefficient
sign coding, using the sign of one neighboring pixel in their context modeling
algorithm. The main idea behind this approach is to find correlations along and
across edges.

The HL subbands of a multi-scale 2-D wavelet decomposition are formed
from low-pass vertical filtering and high-pass horizontal filtering. The high-pass
filtering detects vertical edges, thus the HL subbands mainly contain vertical
edge information. Oppositely defined are the LH subbands that contain primarily
horizontal edge information.

As Deever and H emami ex plained in [6] , given a vertical edge in an HL subband,

sign as the coefficient being coded. This is because vertical correlation often
remains very high along vertical edges in images. When a low-pass filter is applied
along the image columns, it results in a series of similar rows, as elements in a row
tend to be very similar to elements directly above or below due to the high vertical
correlation. Subsequent high-pass filtering along similar rows is expected to yield
vertically correlated transform coefficients.

It is also important to consider correlation across edges, being the nature of the
correlation directly affected by the structure of the high pass filter. For Daubechies’
9/7 filters, which are widely used in image compression, wavelet coefficient signs
are strongly negatively correlated across edges because this filter is very similar
to a second derivative of a Gaussian as derived from theory of zero crossings
and edge detection [11]. So, it is expected that wavelet coefficients will change
sign as the edge is crossed. Although the discrete wavelet transform involves
sub sampling, the sub sampled coefficients remain strongly negatively correlated
across edges. In this manner, when a wavelet coefficient is optimally predicted
as a function of its across-edge neighbors (e.g. left and right neighbors in HL
subbands), the optimal prediction coefficients are negative, indicating an expected
sign change. This conclusion is general for any wavelet with a shape similar to a
second derivative of a Gaussian.

We have applied a 6-level Dyadic Wavelet Transform decomposition of the
source image and then a low quantization level to the resulting wavelet coefficients.
Typically, all wavelet based image encoders apply 5 or 6 wavelet decomposition
levels [7, 9, 13, 14]. As a first approach and taking into account that the sign
neighborhood correlation depends on the subband type (HL, LH, HH) as Deever
assesses in [5], we have used three different neighbors depending on the subband
type. So, for HL subband, the neighbors coefficients used to predict the sign are

it     is    reasonable to expect that neighboring coefficients along the edge have the same
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located at N (North), NN (North-North) and W (West) relative positions. Taking
into account symmetry, for the LH subband, those neighbors are W (West), WW
(West-West), and N (North). For the HH subband they are N (North), W (West),
and NW (North-West), exploiting the correlation along and across the diagonal
edges. For a particular subband, each of the three selected neighbors will have
three possible sign values: positive, negative o null (zero coefficient). This lead
us to a maximum of 33 different Neighbor Sign Patterns (NSP) for each subband
type.

Other encoders like JPEG2000 and the one proposed by [18] use four neighbors
(N, S, E, W) for the context formation, but since most non-embedded encoders
use a Morton order (Z-order) [12] in the coding stage, no information is available
about S and E neighbors and they cannot be employed in context formation. This
represents a restriction when looking for sign correlation among the neighborhood
which it is shared by most of the non-embedded encoders.

C N NN W Occurrences %Probability
+ + + + 13 20.31
+ + + - 8 12.50
- - - + 8 12.50
- + + + 6 9.38
- - + + 6 9.38

Others 23 35.93

Table 1: Probability distribution of neighbor sign patterns (NSPs) of HL6 subband
(8x8 coefficients) in Lena image.

In Table 1 we show the NSP probability distribution for HL6 subband (from
the sixth decomposition level) of Lena test image. As shown, the probability that
the current coefficient (C) is positive when its N, NN and W neighbors are also
positive is around 20%. Besides, if the N and NN neighbors have the same sign
and the W neighbor has the opposite sign, the current coefficient (C) has the
opposite sign of its W neighbor with a probability of 25% as shown in rows two
and three in Table 1. The visible sign neighborhood correlation suggest that the
sign bits of wavelet coefficients are compressible. Using the previously mentioned
neighborhood for each subband type, we have developed a genetic algorithm (GA)
in order to find an accurate sign estimation.

2.1 Genetic algorithm for wavelet sign prediction

The goal of the desired genetic algorithm would be to find a table where for each
Sign Neighborhood Pattern (Vk) we have a sign prediction (Si,j) for coefficient
Ci,j . There is no an univocal relationship between a neighbor sign combination,
i.e not always for a same Vk pattern, Si,j is always positive or negative. However,
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it is possible that for a Vk pattern, Si,j is more probably to be positive or negative.
But, the problem is still more complex, because a sign prediction for a neighbor
sign pattern could fit well for an image and not for others. Therefore, the idea is to
find suboptimal neighbor sign pattern predictions that better fit for a representative
set of images.

The use of genetic algorithms to compress the sign of wavelet coefficients is
twofold. First, when the number of neighbors used to analyze the sign correlation
grows or when there is a great number of images to be used in the analysis,
the search space is excessively wide. Second, it is not intuitive to find a way of
combining the predictions obtained for several images.

In Figure 1 we show the genetic algorithm pseudo code for sign prediction.
First of all we define each individual, containing a sign prediction for each 33

NSP, then each NSP sign prediction of each individual of the universe is randomly
initialized as a positive or negative sign. Then, during evolution, sequences mate
and mutate to generate new individuals in the population, being selected the
best ones for survival on the basis of their fitness function. The mating of
sequences is performed through crossover operator, where parents are randomly
selected and its gens (NSPs) are mixed. The best two individuals, the ones that
exhibit best prediction performance, are selected for survival. Individuals can also
undergo mutation, where a sequence prediction is randomly modified. Finally,
after performing the maximum iterations, the algorithm finishes, obtaining an
optimal/suboptimal sign prediction for each NSP.

Several parameters should be taken into account when training a genetic
algorithm: The population size, the individuals initialization, the number of
iterations performed, the mutation probability, the crossover point, the crossover
method, the selection criteria of the best sequences, etc. We have performed
lots of tests varying these parameters to tune the genetic algorithm [2]. The
parameters used to obtain the sign prediction are: population size (100), individuals
initialization (randomly), number of iterations (1000), mutation probability
(0.075%), mutation policy (inversion of a randomly chosen gen), crossover point
(randomly) and crossover method (best two fitness individuals over four randomly
selected parents).

The genetic algorithm takes as input data a set of test images to determine the
best prediction of wavelet coefficient signs. The corresponding fitness function
will score individuals whose predictions maximize sign compression rate.

After running the genetic algorithm for each subband type, we obtain an
individual containing a prediction of the current coefficient sign (ŜCi,j [k]), for
each NSP (k) of each subband type (see Table 2). So, what we are going to
encode is the correctness of this prediction, i.e., a binary valued symbol from
ŜCi,j [k]⊗ SCi,j .

Data Management and Security   41

 
 www.witpress.com, ISSN 1743-35  (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17



Individual Structure{
sign[NSP];//Prediction array for each neighbor sign pattern combination
fitness; //indicates the goodness of the individual
}Individual universe[NUM-POPULATION]; //Individual array

function SignPrediction (SubbandType, ImageFiles, mutation Probability)
//Initialization phase: sign[NSPs]= random(POSITIVE/NEGATIVE)
Initialize(universe, NUM-POPULATION, NSP);
//we evaluate each individual of the universe. For each image in ImageFiles
EvaluateFitness(SubbandType, ImageFiles, universe);
for i=0 to NUM-ITERATIONS
//Select the best two individuals from universe for survival.

best = SelectBestIndividuals(2);
//Crossover
crossPoint=random(NSP);
//randomly selects a father and a mother to mix its gens
SelectFatherAndMother(random(NUM-POLUTATION));
universe = MergeFatherAndMother(crossPoint);
Mutation(universe, mutation Probability);
universe = universe + best;
EvaluateFitness(SubbandType, ImageFiles, universe);

end
//Finally get the best individual.
best = SelectBestIndividuals(1);

end of function

Figure 1:                Genetic algorithm for sign prediction.

3 Performance evaluation

In this section we analyze the behavior of the proposed sign coding technique. For
this purpose, we will first analyze the bit-rate savings over a set of test images
of different sizes and target bit-rates. So we will evaluate the potential bit-rate
reduction that whatever wavelet encoder without sign coding algorithm could
obtain if our sign coding proposal is included. Before performing the experiments
we have trained and tuned our proposed GA, and we have run it three times, one
for each subband type over the whole Kodak image set [4] in order to get the
corresponding prediction tables. Those tables were codewired in both encoder and
decoder.

In order to determine the impact of the proposed sign coding technique in the
encoder overall performance, we implemented our sign coding proposal in the
LTW wavelet encoder [13], calling it S-LTW. After that, we performed several
experimental tests comparing S-LTW encoder with LTW and SPIHT (Spiht 8.01)
in terms of R/D. The test images used in the evaluation were: Lena (512x512),
Barbara (512x512), Bike (2560x2048), GoldHill (512x512), Cafe (2560x2048),
peppers (512x512), Zelda (512x512) and Woman (2560x2048).

In order to determine the compression performance of the proposed sign coding
scheme alone, we have selected a wavelet non-embedded encoder (LTW), and one
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HL Subband LH Subband HH Subband
NSP (N,NN,W) (W,WW,N) (N,W,NW)

k N1 N2 N3 Prediction Prediction Prediction
(ŜCi,j [k]HL) (ŜCi,j [k]LH ) (ŜCi,j [k]HH )

0 * * * + + +
1 * * + - - +
2 * * - + + -
3 * + * + + -
4 * + + - - -
5 * + - + + -
6 * - * - - +
7 * - + - - +
8 * - - + + +
9 + * * + - -

10 + * + - - -
11 + * - + + -
12 + + * + + -
13 + + + - - -
14 + + - + + -
15 + - * - - +
16 + - + - - -
17 + - - + + +
18 - * * - + +
19 - * + - - +
20 - * - + + +
21 - + * + + +
22 - + + - - -
23 - + - + + +
24 - - * - - +
25 - - + - - +
26 - - - + + +

Table 2: Sign prediction table for HL, LH and HH subbands. N1, N2 and N3 are
the corresponding neighbors for each subband type.

embedded encoder like SPIHT. As no sign coding technique is used, the sign
information is raw encoded, so it would require so many bits as the number of
significant coefficients (one bit per significant coefficient). The sign coding results
were obtained for different image target bit-rates, counting the total number of
significant coefficients to be encoded just after quantization. For example, the LTW
encoder at 1 bpp has to encode 45,740 significant coefficients requiring 45,740 bits
for coding sign information. If we include the proposed sign encoding technique
the encoded sign information will be reduced to 37,804 bits, representing a 17.35%
of bit-rate savings. To show the savings on the other selected wavelet encoder
(SPIHT), we proceed in a similar way. First we obtain the total number of
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Bit-rate S-LTW S-SPIHT %Gain
(bpp) #Significant #Bits #Significant #Bits

Coefficients Saved Coefficients Saved
Barbara (512x512)

1 45740 7936 54657 9482 17.35
0.5 22331 3648 27535 4499 16.34

0.25 10484 1520 13460 1951 14.50
0.125 4343 304 6016 421 7.00

Bike (2048x2560)
1 855266 115200 1371280 184711 13.47

0.5 412212 64424 798202 124758 15.63
0.25 198943 30472 366927 56213 15.32

0.125 91767 11992 162990 21302 13.07
Lena (512x512)

1 51113 4032 51883 4093 7.89
0.5 20886 2328 25451 2837 11.15

0.25 10038 880 12651 1109 8.77
0.125 4724 256 6204 336 5.42

Table 3: Sign compression performance at different bit-rates for S-LTW and
SPIHT.

significant coefficients after quantization. Then we perform a lineal estimation of
bits saved, assuming that there is the same relative gain than in LTW, since both
encoders use the same DWT filter.

In Table 3 we show the relative compression gains with respect to the original
encoder due only to the sign coding capability for several test images. As we can
see, the maximum sign compression gain is 17.35% for Barbara image at 1 bpp.
As expected, the compression gain is higher at low compression rates because
the sign prediction model has been performed using all wavelet coefficients sign
information. As the compression rate increases, the number of non-significant
coefficients increase, loosing prediction performance since the NSPs with some
non-significant neighbour would be more and more dominant what it is just the
opposite situation when computing the sign prediction table. This effect results in
lowering the compression gains up to a 5.42% for Lena image at 0.125 bpp.

4 Conclusions

We have presented a study about sign coding for non-embedded image encoders.
We propose a simplified context model formation that it is oriented to maximize
the successful prediction of the sign for every significant wavelet coefficient. In
order to obtain a good sign prediction, we employ a genetic algorithm specially
trained and tuned with a representative image set. The prediction result is encoded
with an adaptive arithmetic encoder to compact the sign information as much as
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possible. We have implemented it over the LTW encoder in order to evaluate the
sign context model behavior. The new proposed sign coding technique is able to
reduce the sign information with a compression gain up to 17.35% which lead in
a R/D performance increase up to 0.37 dB (as experimental results show), being
greater the improvement at low and medium compression rates. Also, we have
shown that other encoders like SPIHT will obtain similar improvements when
including the sign prediction model, being directly applicable to whatever non-
embedded wavelet encoder.
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