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Abstract 

As databases become networked in more complex multi-tiered applications, their 
vulnerability to external attack grows. We address scalability as a particularly 
vital problem and propose alternative solutions for data encryption as an 
enterprise IT infrastructure component. In this paper we explore a new approach 
for data privacy and security in which a security administrator protecting privacy 
at the level of individual fields and records, and providing seamless mechanisms 
to create, store, and securely access databases. Such a model alleviates the need 
for organizations to purchase expensive hardware, deal with software 
modifications, and hire professionals for encryption key management 
development tasks. Although access control has been deployed as a security 
mechanism almost since the birth of large database systems, many still look at 
database security as a problem to be addressed as the need arises – this is often 
after threats to the secrecy and integrity of data have occurred. Instead of 
building walls around servers or hard drives, a protective layer of encryption is 
provided around specific sensitive data items or objects. This prevents outside 
attacks as well as infiltration from within the server itself. This also allows the 
security administrator to define which data stored in databases are sensitive and 
thereby focusing the protection only on the sensitive data, which in turn 
minimizes the delays or burdens on the system that may occur from other bulk 
encryption methods.  
Keywords:   isolation, intrusion tolerance, database security, encryption, 
privacy, VISA CISP, GLBA, HIPAA. 

1 Introduction 

Although access control has been deployed as a security mechanism almost since 
the birth of large database systems, for a long time security of a DB was 
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considered an additional problem to be addressed when the need arose, and after 
threats to the secrecy and integrity of data had occurred [23]. Now many major 
database companies are adopting the loose coupling approach and adding 
optional security support to their products. You can use the encryption features 
of your Database Management System (DBMS), or perform encryption and 
decryption outside the database. Each of these approaches has its advantages and 
disadvantages. Adding security support as an optional feature is not satisfactory, 
since it would always penalize system performance, and more importantly, it is 
likely to open new security holes. Database security is a wide research area [26, 
23] and includes topics such as statistical database security [21], intrusion 
detection [34], and most recently privacy preserving data mining [22], and 
related papers in designing information systems that protect the privacy and 
ownership of individual information while not impeding the flow of information, 
include [22, 23, 24, 25]. 

2 Choosing the point of policy enforcement and data 
protection (PEPP) 

Encryption is the perfect technique to solve this problem. Prior work [7] [2] does 
not address the critical issue of performance. But in this work, we have 
addressed and evaluated the most critical issue for the success of encryption in 
databases, performance. To achieve that, we have analysed different solution 
alternatives. There are two dimensions to encryption support in databases. One is 
the granularity of data to be encrypted or decrypted. The field, the row and the 
page, typically 4KB, are the alternatives. The field is the best choice, because it 
would minimize the number of bytes encrypted. However, as we have 
discovered, this will require methods of embedding encryption within relational 
databases or database servers. The second dimension is software versus hardware 
level implementation of encryption algorithms. Our results show that the choice 
makes significant impact on the performance. The loss of granular protection 
will impact the security level. This is discussed in more detail in [18]. Choosing 
the point of implementation not only dictates the work that needs to be done 
from an integration perspective but also significantly affects the overall security 
model. The sooner the encryption of data occurs, the more secure the 
environment—however, due to distributed business logic in application and 
database environments, it is not always practical to encrypt data as soon as it 
enters the network. Encryption performed by the DBMS can protect data at rest, 
but you must decide if you also require protection for data while it’s moving 
between the applications and the database. How about while being processed in 
the application itself? Particularly if the application may cache the data for some 
period. Sending sensitive information over the Internet or within your corporate 
network as clear text, defeats the point of encrypting the text in the database to 
provide data privacy. Good security practice protects sensitive data in both cases 
– as it is transferred over the network (including internal networks) and at rest. 
Once the secure communication points are terminated, typically at the network 
perimeter, secure transports are seldom used within the enterprise. Consequently, 
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information that has been transmitted is in the clear and critical data is left 
unprotected. This is discussed in more detail in [18]. 

2.1 Data privacy 

Database-level encryption allows enterprises to secure data as it is written to and 
read from a database. This type of deployment is typically done at the column 
level within a database table and, if coupled with database security and access 
controls, can prevent theft of critical data. Database-level encryption protects the 
data within the DBMS and also protects against a wide range of threats, 
including storage media theft, well known storage attacks, database-level attacks, 
and malicious DBAs. Storage-level encryption enables enterprises to encrypt 
data at the storage subsystem, either at the file level (NAS/DAS) or at the block 
level SAN. This type of encryption is well suited for encrypting files, directories, 
storage blocks, and tape media. In today’s large storage environments, storage-
level encryption addresses a requirement to secure data without using LUN 
(Logical Unit Number) masking or zoning. While this solution can segment 
workgroups and provides some security, it presents a couple of limitations. It 
only protects against a narrow range of threats, namely media theft and storage 
system attacks. However, storage-level encryption does not protect against most 
application- or database-level attacks, which tend to be the most prominent type 
of threats to sensitive data. Current storage security mechanisms only provide 
block-level encryption; they do not give the enterprise the ability to encrypt data 
within an application or database at the field level. Consequently, one can 
encrypt an entire database, but not specific information housed within the 
database. 

2.2 Encryption scheme alternatives 

We considered several possible combinations of different encryption approaches, 
namely; software and hardware level encryption, and different data granularity. 
We started with software encryption at field level. We then developed search 
acceleration support to index encrypted fields, and experienced a low 
performance overhead when searching on encrypted fields, including primary 
index fields. We also directed our experiments hardware level encryption only 
for master key encryption. 

2.3 Basic software level encryption 

Initially we considered several encryption algorithms AES, RSA [10] and b) 
Blowfish [11] for the implementation. We conducted experiments using these 
algorithms and found that the performance and security of the AES algorithm is 
better than the RSA implementation and the Blowfish algorithm implementation. 
AES is fast, compared to other well-known encryption algorithms such as DES 
[12]. Detailed description of the algorithm is given in [12].  

2.4 Hardware level encryption 

We studied the use of HSM FIPS-140-1 level 3 Hardware Security Modules with 
a mix of hardware and software keys. The master key was created and encrypted 
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/ decrypted on HSM. The master key is not exposed outside the HSM. The cost 
of encryption/decryption consists of start up cost, which involves function and 
hardware invocation, and encryption/decryption algorithm execution cost, which 
is depended on the size of the input data. This implies that the start up cost is 
paid every time a row is processed by encryption. We used specialized 
encryption hardware from different vendors, including IBM, Eracom, nCipher, 
and Chrysalis for this test. On of our test beds used the IBM S/390 
Cryptographic Coprocessor, available under IBM OS/390 environment with 
Integrated Cryptographic Enterprise IT infrastructure component Facility (ICSF) 
libraries. IBM DB2 for OS/390 provides a facility called ”editproc” (or edit 
routine), which can be associated with a database table. An edit routine is 
invoked for a whole row of the database table, whenever the row is accessed by 
the DBMS. We registered an encryption/decryption edit routine for the tables. 
When a read/write request arrives for a row in one of these tables, the edit 
routine invokes encryption/decryption algorithm, which is implemented in 
hardware, for whole row. We used the DES [3] algorithm option for encryption 
hardware. The loss of granular column-level protection will impact the security 
level. This is discussed and evaluated earlier. 

2.5 Encryption penalty 

If we compare the response time for a query on unencrypted data with the 
response time for the same query over the same data, but with some or all of it 
encrypted, the response time over encrypted data will increase due to both the 
cost of decryption as well as routine and/or hardware invocations. This increase 
is referred to as the encryption penalty.  An observation according to recent 
studies is that, different fields have different sensitivity [16]. It is possible for 
Hybrid to support encryption only on selected fields of selected tables. 
Encryption, by its nature, will slow down most SQL statements. If some care and 
discretion are used, the amount of extra overhead should be minimal. Also, 
encrypted data will have a significant impact on your database design. In general, 
you want to encrypt a few very sensitive data elements in a schema, like Social 
security numbers, credit card numbers, patient names, etc. Some data values are 
not very good candidates for encryption -- for example booleans (true and false), 
or other small sets like the integers 1 through 10. These values along with a 
column name may be easy to guess, so you want to decide whether encryption is 
really useful. Creating indexes on encrypted data is a good idea in some cases. 
Exact matches and joins of encrypted data will use the indexes you create. Since 
encrypted data is essentially binary data, range checking of encrypted data would 
require table scans. Range checking will require decrypting all the row values for 
a column, so it should be avoided if not tuned appropriately with an accelerated 
search index. 

2.6 Query rewrite to improve encryption overhead 

We implemented limited support for rewrite of a query, and experienced 
significant optimisation capabilities when searching on encrypted columns. A 
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method for common sub-expression elimination (CSE) needs to be applied to 
expensive user defined functions for a query. Common sub-expression detection 
and elimination are well known in compiler optimisation [1] [9].   

3 Scalability of different encryption architectures 

Each of these approaches has its advantages and disadvantages. Adding only 
central security and encryption support is not satisfactory, since it would always 
penalize system performance, and more importantly, it is likely to open new 
security holes. Database security is a wide research area [6, 3] and includes 
topics such as statistical database security [21], intrusion detection [19, 4], and 
most recently privacy preserving data mining [13], and related papers in 
designing information systems that protect the privacy and ownership of 
individual information while not impeding the flow of information, include [13, 
14, 5, 8].   

3.1 Performance considerations   

We studied the industry standard SQL benchmark [15] as a model for workloads. 
Some simple sample tests on Oracle and DB2. The first benchmark was focus on 
a particular customer scenario. Subsequent benchmarks used a workload 
combined from multiple customer case studies. The technological aspects of 
developing database privacy as an enterprise IT infrastructure component lead to 
new research challenges. First and fore-most is the issue of encryption key 
management. Most corporations view their data as a very valuable asset. The key 
management system would need to provide sufficient security measures to guard 
the distributed use of encryption keys. We propose a combined hardware and 
software based data encryption system as the solution to this problem. A 
distributed policy and audit capability is proposed for the control the use of 
different encryption keys. Detailed investigation of this solution is presented 
below. Since the interaction between the database and the enterprise IT 
infrastructure component there are potential over-heads introduced by 
encryption. Therefore the sources of performance degradation and its 
significance should be determined. 

3.2 Network Attached Encryption 

The Network Attached Encryption is implemented as a Network Attached 
Encryption Appliance that scales with the number of Network Attached 
Encryption Appliances available. The benchmarks showed a throughput of 
between 440 and 1,100 row-decryptions per second. The benchmarks showed a 
linear scalability of this topology when adding additional database servers. A 
system with twelve database servers performed at 4,200 row-decryptions per 
second with five Network Attached Encryption Appliances. In prior work with 
IBM Research [46] we addressed some critical performance issues when using 
HSM support. A coming paper will address how to avoid the problems of 
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performance and scalability when using HSM support, and also how to prevent 
API level attacks when using HSM support, including Network Attached 
Encryption  Appliances. 

3.3 The Hybrid system   

The Hybrid system is implemented as distributed processes that scale with the 
number of processors and database server available. The Hybrid solution can 
also utilize an optional HSM in a way that allows the total encryption system to 
scale with the number of processors available on the database servers. Our DB2 
benchmarks at IBM showed a typical throughput of 187,000 row-decryptions per 
second, with 20 concurrent users. This translates to an ability to decrypt 187,000 
database table rows per second. The test tables included 80 bytes of encrypted 
data per row. We saturated all six RS6000 processors at 100% utilization when 
we tested with 1,000 concurrent users. Some additional benchmarks with DB2, 
and Oracle showed a typical throughput in the range of 66,000 to 110,000 row-
decryptions per second, on a two processor, 3 GHz system with 3 GB RAM, 
running a Windows operating system. The benchmarks also showed a linear 
scalability of this topology when adding additional database servers. A system 
with twelve database servers performed at 2,100,000 row-decryptions per 
second. Additional tuning by adding an accelerated search index for encrypted 
columns, reduced the response-time and the number of rows to decrypt, by a 
factor between 10 and 30 for some of the queries in our Oracle test. This can be 
viewed as enabling a ‘virtual throughput’ in the range of 660,000 to 1,100,000 
‘virtual row-decryptions’ per second, when comparing to a solution that is not 
using an accelerated search index for encrypted columns. Some preliminary 
benchmarks with SQL Server showed a typical throughput in the range of 3,000 
to 32,000 row-decryptions per second, depending on a optimised combination of 
column level encryption and table level encryption, and the amount of cached 
table data, The initial SQL Server 2000 test used a low-end test system running 
Windows with a 1.6 GHz processor, 1 GB Physical RAM, and 3 GB Virtual 
RAM. Additional details from the ongoing benchmarks will be discussed in a 
coming paper. 

4 Policy management 

Current commercial RDBMSs support many different kinds of identification and 
authentication methods, password-based authentication [32], host-based 
authentication [24, 32, 31], PKI (Public Key Infrastructure) based authentication 
[39], third party-based authentications such as Kerberos [37], DCE (Distributed 
Computing Environment [43]) and smart cards [40]. Essentially, all methods rely 
on a secret known only to the connecting user. It is vital that a user should have 
total control over her/his own secret. For example, only she/he should be able to 
change her/his password. Other people can change a user's password only if they 
are authorized to do so. In a DB system, a DBA can reset a user's password upon 
the user's request, probably because the user might have forgotten her/his 
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password. However the DBA can temporarily change a user's password without 
being detected and caught by the user, because the DBA has the capability to 
update (directly or indirectly) the system catalogs. This is discussed in more 
detail in [18]. 

5 Auditability 

Technically, if we allow a DBA to control security without any restriction, the 
whole system becomes vulnerable because if the DBA is compromised, the 
security of the whole system is compromised, which would be a disaster. 
However if we have a mechanism in which each user could have control over 
their own secrecy, the security of the system is maintained even if some 
individuals do not manage their security properly. Access control is the major 
security mechanism deployed in all RDBMSs. It is based upon the concept of 
privilege. A subject (i.e., a user, an application, etc.) can access a database object 
if the subject has been assigned the corresponding privilege. Access control is 
the basis for many security features. Special views and stored procedures can be 
created to limit users' access to table contents. However, a DBA has all the 
system privileges. Because of their ultimate power, a DBA can manage the 
whole system and make it work in the most efficient way. However, they also 
have the capability to do the most damage to the system. With a separated 
security directory the security administrator sets the user permissions. Thus, for a 
commercial database, the security administrator (SA) operates through separate 
middle-ware, the Access Control System (ACS), used for authentication, 
verification, authorization, audit, encryption and decryption. The ACS is tightly 
coupled to the database management system (DBMS) of the database. The ACS 
controls access in real-time to the protected fields of the database. Such a 
security solution provides separation of the duties of a security administrator 
from a database administrator (DBA).   

6 Encryption key management 

One of the essential components of encryption that is often overlooked is key 
management - the way cryptographic keys are generated and managed 
throughout their life. Because cryptography is based on keys that encrypt and 
decrypt data, your database protection solution is only as good as the protection 
of your keys. Security depends on two factors: where the keys are stored and 
who has access to them. When evaluating a data privacy solution, it is essential 
to include the ability to securely generate and manage keys. This can often be 
achieved by centralizing all key management tasks on a single platform, and 
effectively automating administrative key management tasks, providing both 
operational efficiency and reduced management costs.   

7 Conclusion 

We addressed scalability as a particularly vital problem and propose alternative 
solutions for data encryption as an enterprise IT infrastructure component. In this 
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paper, we introduced the Hybrid, a database privacy solution built on top of all 
major relational databases. The Hybrid model introduces many significant 
challenges primary of which are the additional overhead of searching on 
encrypted data an infrastructure to guarantee data privacy, and management of 
such an enterprise IT infrastructure component. We have addressed these issues. 
Our experiments using several benchmarks showed that the overhead is tolerable 
when using a suitable encryption architecture. The Hybrid model implements a 
scalable approach for data privacy and security in which a security administrator 
protecting privacy at the level of individual fields and records, and providing 
seamless mechanisms to create, store, and securely access databases. Such a 
model alleviates the need for organizations to purchase expensive hardware, deal 
with software modifications, and hire professionals for encryption key 
management development tasks. We proposed, implemented, and evaluated 
different encryption schemes. We showed the drastic decrease in query execution 
times from distributed software level encryption.  We believe, from our 
experience, database privacy as an infrastructure service is a viable model and 
has a good chance of emerging as a successful offering for most applications.     
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