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Abstract 

An XML enabled framework for the representation of association rules in 
databases was first presented in [4]. In Frequent Structure Mining (FSM), one of 
the popular approaches is to use graph matching that use data structures such as 
the adjacency matrix [7] or adjacency list [8]. Another approach represents semi-
structured tree-like structures using a string representation, which is more space 
efficient and relatively easy for manipulation [10]. However, with XML, mining 
association rules are faced with more challenges due to the inherent flexibilities 
in both structure and semantics, such as: 1) more complicated hierarchical data 
structure; 2) ordered data context; and 3) much bigger data size. To tackle these 
challenges, we propose an approach, X3-Miner, that efficiently extracts patterns 
from a large XML data set, and overcomes the challenges by: (1) exploring the 
use of a model validating approach in deducing the number of candidates 
generated by taking into account the semantics embedded in the tree-like 
structure in an XML database and obtain only valid candidates out of the XML 
database; (2) minimising I/O overhead by intersecting XML database with the 
frequent 1-itemset. This results in a frequent 1-itemset XML tree. The algorithm 
also progressively trims infrequent k-itemsets that contain infrequent                
(k-1)-itemsets; (3) extending the notion of string representation of a tree 
structure proposed in [10] to xstring for describing an XML document without 
loss of both structure and semantics. Such an extension enables an easier 
traversal of the tree-structured XML data during our model-validating candidate 
generation. Our experiments with both synthetic and real-life data sets 
demonstrate the effectiveness of the proposed model-validating approach in 
mining XML data. 
Keywords: association mining, tree, algorithm, semantic relationships, XML. 
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1 Introduction 

In several years we have seen tremendous works in the area of mining graph, 
sequence and tree data for patterns of interest [4, 5, 7, 8, 10, 11]. Association 
mining has been so successful in discovering useful associations between data 
[1, 3, 4, 5, 9, 10]. Most of the works done in association mining [1, 6, 9] were 
tailored for structured data but only few for semi-structured data [2, 4, 5, 10, 11]; 
especially where the order is important and schema is not fixed. While some 
approaches have focused on mining for patterns in databases containing general 
graphs  [7, 8], the rising of XML data and the need for mining semi-structured 
data has sparked a lot of interest in finding frequent rooted trees in forests [2, 4, 
5, 10, 11]. Our research takes a step on developing an algorithm that is well 
suited to the characteristics of the domain described in [4, 5] that is characterized 
by: 1) a more complicated hierarchical data structure; 2) an ordered data context; 
and 3) a much bigger data size.  It extends the notion of associated items to XML 
fragments to present associations among trees. Despite the strong foundation 
established in [4], however, an efficient way to implement the framework had 
not been discussed. Ling et al. continue their work with a template model for 
mining XML-enabled association rules [5].  Zaki presented TreeMiner [10], an 
algorithm to discover all frequent sub-trees in a forest using a data structure 
called the scope-list.  The developed algorithm was one of the most efficient 
current approaches to tree mining and the algorithm could be extended for the 
purpose of mining frequent tree structures in XML documents. In DHP [9], the 
2-itemset candidate reduction is performed to overcome the performance 
bottleneck in Apriori. Recently, [11] has proposed a hybrid approach 
transforming XML documents into IX-Tree and Multi-DB depending on the size 
of the XML documents. The reported approach showed that XAR-Miner is more 
efficient in performing a large number of AR mining tasks from XML 
documents than the MINE RULE operator. 
     In this paper we propose a novel approach to efficiently extract frequent 
patterns from XML database. We deviate developing our algorithm from 
XQuery-based approaches as its implementation suffers greatly from a slow 
performance. The proposed algorithm employs a unique strategy to efficiently 
generate candidates that improves significantly over the classic apriori based 
approaches. As has been pointed out in [6], Apriori based approaches [1, 3, 7, 8, 
9, 10] suffer greatly from an inherent problem in generating C2. In most of the 
previous works proposed the database provides little clue of how candidates can 
be generated out of records or transactions. Very often majority of candidates 
have been generated with little knowledge of the actual data model. In Apriori 
[1], candidate generation, Ck, is done by joining (operator *) frequent (k-1)-
itemsets, Lk-1, with itself, Lk-1 * Lk-1. If the order is important and |L1| (size of L1) 
equals to n, the complexity of generating 2-itemsets in Apriori turns out to be in 
O(n2) complexity class. Many candidates generated are useless, invalid or 
redundant. A systematic guided candidate generation according to model 
validating rule is what we aim in this research. Able to do so, generation of 
invalid patterns can be minimized. Subsequently, A substructure of size (k+1) 
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should then be able to be generated from a substructure of size k from any 
particular XML data following the data model embedded in the XML document. 
The data model in XML is described by the inherent hierarchical relationship 
between the elements /attributes contained in it.  
     Section 2 examines our three phases candidate generation in detail and 
presents our algorithm. Section 3 gives the problem decomposition. We 
empirically evaluate the performance of these algorithms and study their scale-up 
properties in section 4 and the last section concludes the paper. 

2 Our approach 

2.1 The three phases 

To do candidate generation, a data structure to represent the XML data in space 
efficient way and easy to manipulate need to be constructed. Our approach 
transforms the XML data into a string like presentation called xstring. Our string 
representation differ with TreeMiner in two ways, firstly we incorporate a dpp 
into our string representation. Secondly, we utilize the xstring to generate 
candidate through guided model approach. For each of the element read from the 
XML document the triplet, as introduced earlier, [pos, scopemax](dpp), is 
constructed. The next phase is to generate 1-tsis. Generating 1-tsis is known as 
generating C1. We are not only generating 1-tsis and count its frequency but also 
probing the coordinates of each unique element contained in the actual XML 
database. The probing phase memorizes coordinates of each unique element 
located in the XML database. One-to-many relationships occur between any 
particular patterns and their coordinates. Having to probe coordinates of patterns 
with increasing size from the database is an expensive process. Fortunately, we 
only need to do the coordinates probing once. Thus, having represented our data 
in xstring format enables us to do the coordinates construction for C2, …, Ck 
process more efficiently through level-wise coordinates expansion.  
     As we all understand that with Apriori-based approach, the candidate 
generation strategy produces candidates that logically and physically never exist 
in the database. Their approach let the algorithm generates candidates through 
join operations. Most of the constructed candidates will then be discarded at the 
next stage as the algorithm locate that they have no existence in the database. 
Our expansion strategy eliminates the need to generate redundant, meaningless, 
and inexistence candidates as our approach takes advantage of the coordinates in 
the xstring. For each of the tsi constructed from the database the coordinate 
introduced conceptually adds visioning ability. With this visioning ability the 
expansion can be done in a systematic and natural way. It grows the tsis 
according to the XML tree model. In addition, our approach also considers I/O 
optimization by early intersection of frequent 1-itemset with the databases. We 
construct a hashing approach to suit our solution for applying association mining 
to XML database using xstring as the hash key. One of our novel approaches in 
attempt to bring the complexity of C2 into a manageable O(kn) complexity, 
where for the worst case scenario k represents the depth of the tree and n the tree 
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size. The formal prove would be left explained in our future work. Throughout 
the candidate generation process, the algorithm trims the string that contains 
infrequent substring so that it adheres with the downward closure lemma [1]. 

2.2 Problem statement 

XML data can be easily represented in a tree-like structure. A rooted tree is a tree 
in which one of the vertices is distinguished from others, and called the root. 
XML data is a rooted well-formed tree [4]. We refer to a vertex of a rooted tree 
as a node of the tree. In case of XML data, node refers to tag. An ordered tree is 
a rooted tree in which the order of the children of each node is important. XML 
document frequently modelled using a labelled ordered tree. Because of the 
space limitation, we leave readers to consult [4, 10] for some definition in 
regards to tree structure includes ancestor-descendant relationship between tags. 
Embedded subtrees are a generalization of induced subtrees [7]. They allow not 
only direct parent-child edges, but also ancestor-descendant edges. Via 
embedded subtrees, hidden pattern deep within large trees can be detected. In 
this paper, we consider embedded subtree and induced subtree. The difference 
between embedded subtree and induced subtree can be seen in [4, 10]. 
     Node position, scope and direct parent pointer. We denote a tree as T as 
collection of nodes (N) and edges (E). The size of T, denoted as |T|, is the 
number of nodes in T. Each node n ∈  N will contain a triplet with notation: 
[pos, scopemax] (dpp), where pos is node position, scopemax is the right-most 
descendant’s node position, and direct parent pointer (dpp) refer to its parent 
node position. Each node position has an integer number, i, start from 0 
following its position (coordinate) in depth-first (or pre-order) traversal of the 
tree. The scope is defined as the descendant’s node position. The scope of node 
is defined such as such as {(n,m) | n ≤  m, n, m is positive integer}. All nodes 
within the scope of node n would be its children or descendants, except itself. 
The second integer, m (scopemax), in scope pair describes the position of its right 
most descendant according to pre-order traversal. For more details explanation of 
how scope pair works reader can consult [10]. Also, to directly reference a parent 
node of any particular node, a direct parent pointer (dpp) notion is introduced. 
Having the triplet of node position, scopemax and direct parent pointer described 
we can now interpret the triplet notation attached to each node. For example 
node A has a triplet [0,5](-1), i.e. it is at position 0, with scopemax = 5 and have 
no parent, -1. Node D has a triplet [2, 2](1), i.e. it is at position 2, with scopemax = 
2 and its parent is located at position 1.  
     XML document mining problem. The challenge of association mining is in 
fact to have efficient and scalable process in discovering large itemsets [6, 9]. 
After all large itemsets discovered the generation of association rules can be 
derived more straightforwardly. The paper concentrates on developing 
discovering large itemsets and apply the technique to XML data (semi-structured 
data). The problem of finding frequent patterns from XML data deals with tree-
like structure and to present associations among trees rather than simple-
structured items of atomic values. Consequently, a tree like structure and a 
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collection of tree-like structures with size k will be called a k tree-structured-item 
(k-tsi) and a k tree-structured-itemset (k-tsi set). 
     Let D denote a database of XML document (database of trees). Let S∴T 
(read: T embed S) for some T ∈  D. Each occurrence of S can be identified by its 
matched string, which is given as the unique set of sequence of string (in T) for 
string in S. The string is constructed from the combination of XML elements, 
attributes and values. More formally, let {t1, t2, …, tn} be the XML elements in 
T, with |T| = n, and let {s1, s2, …, sm} be the XML elements in S, with |S| = m. 
Then S has a match string {ti1, ti2, …, tim}, if and only if: 1) str(sk) = str(tik) for 
all k = 1, …, m, and 2) edge e(sj, sk) in S iff tij, is ancestor of tik in T. The first 
condition specifies that all nodes in S have a match in T, while the second 
condition indicates that the tree structure or topology of the matching nodes in T 
is the same as in S. Let δT(S) defined as the number of occurrences of the subtree 
S∴T. Zaki [10] proposed two type of supports, weighted and non-weighted 
support. Let σ(S) be the support of subtree S∴T. Our definition of support of 
S∴T is defined as σ(S) = ΣT∈D δT(S), i.e. total number of occurrences of S over 
all trees in T. This definition of support is equivalent to the weighted support 
definition. A subtree S is frequent if its support is more than or equal to a user-
specified minimum support (σmin). Our goal in mining XML document is to 
enumerate all frequent tsis in D given a user specified σmin value. 

 
/* C1 Generation pseudo-code */ 
D = Transform_XMLtoXString(xml-filename); 
min_support = s; 
k = 1; 
for each tag x in D { 
 1-xstring    = xstring(x); 
 x-coordinate = getCoordinate(x); 
 string-key   = generateStringKey(x); 
 hitem   = hashitem(1-xstring, string-key, x-coordinate); 
 insert(C1, hitem); 
} 
 
/* L1 Generation */ 
for each hashitem hitem in C1{ 
   if(count(hitem) >= min_support) 
      insert(L1, hitem) 
   else 
      trimming(D, hitem) /* Trimming: D - h */ 
} 
k++; 
/* Ck Generation */ 
while(Lk-1.size() > 0){ 
    for each hashitem hitem in Lk-1 { 
    for each coordinate c in hitem { 
     base-xstring = getBase(hitem, c); 
    string-key = getStringKey(hitem) 
    generateCandidates(base-string, string-key, Ck, Lk-1, D); 
  } 
    } 
    /* Generate k-Frequent Itemsets */ 
    for each hashitem hitem in Ck { 
  if(count(hitem) >= min_support)  
  insert(Lk, hitem); 
    } 
    k++; 
} 

Figure 1: Frequent sets generation pseudo-code. 
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3 X3-Miner algorithm 
In this section, we present the pseudo-code of our algorithm in details. We 
present our C2 generation approach and its complexity calculation. Continued 
with our Ck generation approach and followed by updating backtrack approach. 
Finally we present our k-trimming approach that validates each k-tsi against 
downward closure lemma.  
 

/* generateCandidates function */ 

generateCandidates(base-xstring, key-string, Ck, Lk-1, D) 
{ 
   base-coordinates = getCoordinates(base-xstring); 
   coord-size    = length(base-xstring); 
   parent-pointer   = coord-size – 1; 
   head     = getFirstCoordinate(base-xstring); 
   tail     = getLastCoordinate(base-xstring); 
 
   slot = tail; 
   next-child-coordinate = (tail + 1); 
   while(slot >= head) 
   { 
      end-child-coordinate = getScopeMax(D, slot); 
 
      for(j = next-child-coordinate; j <= end-child-coordinate; j++) 
      {    
          newnode = getNode(D, j); 
          if (isFrequent(newnode)) 
 { 

   prefix-string  = append(key-string, backtracks-string); 
   newnode-string  = generateStringKey(newnode); 

   
             // Check if (k-1)substring including newnode-string is frequent 
             if(IsFrequent(prefix-string, newnode-string, coord-size, Lk-1)) 
             { 
                k-xstring = append(base-xstring, node, parent-pointer); 
                newcoord  = append(base-coordinates, getCoordinate(node)); 
                new-key-string = append(prefix-string, newnode-string);    
                hitem = hashitem(k-xstring, new-key-string, newcoord); 
                Insert(Ck, hitem); 
             } 
         } 
       } 
       next-child-coordinate = end-child-coordinate + 1; 
       slot = findNextParent(slot); 
       updateBacktracks(backtracks-string, parent-pointer); 
   } 
} 

Figure 2: Candidate generation pseudo-code. 
/* pseudo code for updating backtracks and direct parent pointer */ 
n = D[n]->GetDirectParentPointer(); 
current-dpp = SD[previous-dpp]->GetDirectParentPointer(); 
short hit; 
 
if(current-dpp <= -1) 
   hit = 1; 
else 
   hit = SD[current-dpp]->Equal(D[n]); 
 
if (hit) 
{ 
   previous-dpp = SD[previous-dpp]->GetDirectParentPointer(); 
   number-of-backtracks++; 
   for(int i=0; i < number-of-backtracks; i++) 
   { 
      backtracks-string += "/ "; 
   } 
   previous-backtracks-string = backtracks-string; 
} 
else 
   backtracks-string = previous-backtracks_string + "/ "; 

Figure 3: Update backtracks. 
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4 Results and discussion 

We tested our algorithm by using the same data type that is used by the 
TreeMiner for the purpose of comparison. TreeMiner defines weighted and non-
weighted support. For the purpose of mining semi-structured type of data 
weighted support is considered to be more appropriate.  
     Zaki developed two variants of TreeMiner: VTreeMiner and HTreeMiner. He 
reported in [10] that VTreeMiner execute the mining task at about 4 to 20 times 
faster than HTreeMiner. However, apart from reported result our experiment 
result shows that VTreeMiner reports all embedding subtree while HTreeMiner 
reports all embedding subtree that contains only frequent subtree. In other words, 
VTreeMiner doesn’t trim k-tsis that contain infrequent {(k-1), …, 0}-tsis (called 
sub-tsis). Consequently, HTreeMiner does more processing to trim k-tsis that 
contain infrequent sub-tsis. As the result, VTreeMiner not only faster than 
HTreeMiner but also reports far more candidates than HTreeMiner. On the other 
hand, our approach checks and trims all tsis that contain infrequent sub-tsis. The 
experimental result shown below confirms our result with HTreeMiner.  
     We also run the benchmarking on parallel Xeon processor PIII 1 GHz 
machine with 1024 MB RAM. Some test results are presented below: 
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Figure 4: Graph of HTreeMiner & X3-Miner candidates generation. Vertical 
& horizontal line representing the number of candidates & iteration 
respectively. 

     From the fig. 4 above it is shown that X3-Miner in overall generates less 
candidates for the same number of frequent itemsets as TreeMiner.  It can be 
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seen from the graph above that the difference between the candidates curve and 
the frequent itemsets curve is smaller than the TreeMiner’s.  
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Figure 5: Graph of X3-Miner running dblp data (nodes = 123012). 

article year[1984] / journal[J. Comb. Theory, Ser. A]  - 71 
article year[1993] / volume[11] / journal[Image Vision Comput.]  - 66 
article year[2003] / volume[19] / journal[Future Generation Comp. Syst.]  - 120 

Figure 6: Frequent items of dblp (nodes = 123012). 

     On the other hand, the TreeMiner is a very efficient algorithm in mining 
frequent tree structures within a forest. We compared our algorithm with 
TreeMiner and the same frequent itemsets were detected. The difference lies in 
the fact that our algorithm generated less candidates due to the model-validating 
approach applied in comparison to generating candidates using the join operation 
as done in most of the apriori based approach such as the TreeMiner. However 
TreeMiner performed the task in less time.  
     This gain in efficiency could be due to the assumed file structure in 
TreeMiner where the tree is represented as a list of integers rather than an XML 
document. Processing and hashing integers is more efficient than processing 
strings. As our approach actually takes in XML documents as input and takes 
care of the structure and the values of the attributes the implementation had to be 
done in the way where strings were processed and hashed. Our observation 
indicates that this is where the extra computational cost comes from. 
Theoretically our algorithm should execute the task faster as it generates fewer 
candidates at each step. The larger the number of the infrequent candidates 
generated the more time needed for processing.  
     With the XML data set we use a cut-down version of dblp.xml database with 
123012 number of nodes. Fig. 6, shows some frequent tree structured items 
represented in string representation. The result tells us that there are a significant 
number of article published in year 2003 with volume 9 in journal of Future 
Generation Comp. Syst. in the dblp file. So is with the number of article 
published in Journal of J. Comb. Theory, Ser. A in 1984. In reality the two 
algorithms are incompatible for efficiency comparisons due to different type of 
data being processed. This caused different implementation issues as mentioned 

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line) 

294  Data Mining VI



above implementations differ because of different constraints imposed on the 
type of data that is processed. Optimization will be the focus of our future works.    

5 Conclusions 

The main strength of the proposed approach is that the candidate generation is 
model validating and so there is no time wasted in generating invalid candidates 
that are discarded at a later stage. The algorithm can process an XML document 
directly taking into account the values of the nodes present in the XML tree. The 
frequent item-sets generated will contain node names and values in comparison 
to the TreeMiner approach which only generates frequent tree structures and 
does not process an XML document in the form that is mostly present. The 
frequent item-sets generated by our approach are in the XML format that can be 
interpreted as association rules supported by the minimum support provided by 
the user. The current way the string representation of a sub-pattern is used as the 
key in the hash multimap may be the cause for extra computational cost as we 
include the values and names of each node and so when hashcode is calculated it 
is more expensive. The algorithm is still performing candidate generation 
efficiently on large XML documents but as frequent sub-patterns grow there will 
be a large increase in the computational cost. Some of the immediate extensions 
to the algorithm will be to investigate the bottleneck of performance and find a 
more efficient way for storing and retrieving the formed candidate sub-patterns. 
In the current work we have shown that candidate generation for XML 
documents does not have to follow the traditional approach of performing joins 
on frequent item-sets and in a sense generating all the possible candidates blindly 
without consulting the document model. Moreover, from the theoretical 
perspective it is always preferred to have a model based upon which reasoning is 
validated. The major extensions to the current work will be to perform rule 
extraction on the extracted interesting patterns from XML document. This will 
improve the task as there will be no irrelevant patterns to interfere with the 
learning mechanism.   
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