
X3-Miner: mining patterns
from an XML database

H. Tan1, T. S. Dillon1, L. Feng2, E. Chang3 & F. Hadzic1

1Faculty of Information Technology, University of Technology Sydney,
Australia
2University of Twente, The Netherlands
3Curtin University, Australia

Abstract

An XML enabled framework for the representation of association rules in
databases was first presented in [4]. In Frequent Structure Mining (FSM), one of
the popular approaches is to use graph matching that use data structures such as
the adjacency matrix [7] or adjacency list [8]. Another approach represents semi-
structured tree-like structures using a string representation, which is more space
efficient and relatively easy for manipulation [10]. However, with XML, mining
association rules are faced with more challenges due to the inherent flexibilities
in both structure and semantics, such as: 1) more complicated hierarchical data
structure; 2) ordered data context; and 3) much bigger data size. To tackle these
challenges, we propose an approach, X3-Miner, that efficiently extracts patterns
from a large XML data set, and overcomes the challenges by: (1) exploring the
use of a model validating approach in deducing the number of candidates
generated by taking into account the semantics embedded in the tree-like
structure in an XML database and obtain only valid candidates out of the XML
database; (2) minimising I/O overhead by intersecting XML database with the
frequent 1-itemset. This results in a frequent 1-itemset XML tree. The algorithm
also progressively trims infrequent k-itemsets that contain infrequent
(k-1)-itemsets; (3) extending the notion of string representation of a tree
structure proposed in [10] to xstring for describing an XML document without
loss of both structure and semantics. Such an extension enables an easier
traversal of the tree-structured XML data during our model-validating candidate
generation. Our experiments with both synthetic and real-life data sets
demonstrate the effectiveness of the proposed model-validating approach in
mining XML data.
Keywords: association mining, tree, algorithm, semantic relationships, XML.

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VI 287

1 Introduction

In several years we have seen tremendous works in the area of mining graph,
sequence and tree data for patterns of interest [4, 5, 7, 8, 10, 11]. Association
mining has been so successful in discovering useful associations between data
[1, 3, 4, 5, 9, 10]. Most of the works done in association mining [1, 6, 9] were
tailored for structured data but only few for semi-structured data [2, 4, 5, 10, 11];
especially where the order is important and schema is not fixed. While some
approaches have focused on mining for patterns in databases containing general
graphs [7, 8], the rising of XML data and the need for mining semi-structured
data has sparked a lot of interest in finding frequent rooted trees in forests [2, 4,
5, 10, 11]. Our research takes a step on developing an algorithm that is well
suited to the characteristics of the domain described in [4, 5] that is characterized
by: 1) a more complicated hierarchical data structure; 2) an ordered data context;
and 3) a much bigger data size. It extends the notion of associated items to XML
fragments to present associations among trees. Despite the strong foundation
established in [4], however, an efficient way to implement the framework had
not been discussed. Ling et al. continue their work with a template model for
mining XML-enabled association rules [5]. Zaki presented TreeMiner [10], an
algorithm to discover all frequent sub-trees in a forest using a data structure
called the scope-list. The developed algorithm was one of the most efficient
current approaches to tree mining and the algorithm could be extended for the
purpose of mining frequent tree structures in XML documents. In DHP [9], the
2-itemset candidate reduction is performed to overcome the performance
bottleneck in Apriori. Recently, [11] has proposed a hybrid approach
transforming XML documents into IX-Tree and Multi-DB depending on the size
of the XML documents. The reported approach showed that XAR-Miner is more
efficient in performing a large number of AR mining tasks from XML
documents than the MINE RULE operator.
 In this paper we propose a novel approach to efficiently extract frequent
patterns from XML database. We deviate developing our algorithm from
XQuery-based approaches as its implementation suffers greatly from a slow
performance. The proposed algorithm employs a unique strategy to efficiently
generate candidates that improves significantly over the classic apriori based
approaches. As has been pointed out in [6], Apriori based approaches [1, 3, 7, 8,
9, 10] suffer greatly from an inherent problem in generating C2. In most of the
previous works proposed the database provides little clue of how candidates can
be generated out of records or transactions. Very often majority of candidates
have been generated with little knowledge of the actual data model. In Apriori
[1], candidate generation, Ck, is done by joining (operator *) frequent (k-1)-
itemsets, Lk-1, with itself, Lk-1 * Lk-1. If the order is important and |L1| (size of L1)
equals to n, the complexity of generating 2-itemsets in Apriori turns out to be in
O(n2) complexity class. Many candidates generated are useless, invalid or
redundant. A systematic guided candidate generation according to model
validating rule is what we aim in this research. Able to do so, generation of
invalid patterns can be minimized. Subsequently, A substructure of size (k+1)

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

288 Data Mining VI

should then be able to be generated from a substructure of size k from any
particular XML data following the data model embedded in the XML document.
The data model in XML is described by the inherent hierarchical relationship
between the elements /attributes contained in it.
 Section 2 examines our three phases candidate generation in detail and
presents our algorithm. Section 3 gives the problem decomposition. We
empirically evaluate the performance of these algorithms and study their scale-up
properties in section 4 and the last section concludes the paper.

2 Our approach

2.1 The three phases

To do candidate generation, a data structure to represent the XML data in space
efficient way and easy to manipulate need to be constructed. Our approach
transforms the XML data into a string like presentation called xstring. Our string
representation differ with TreeMiner in two ways, firstly we incorporate a dpp
into our string representation. Secondly, we utilize the xstring to generate
candidate through guided model approach. For each of the element read from the
XML document the triplet, as introduced earlier, [pos, scopemax](dpp), is
constructed. The next phase is to generate 1-tsis. Generating 1-tsis is known as
generating C1. We are not only generating 1-tsis and count its frequency but also
probing the coordinates of each unique element contained in the actual XML
database. The probing phase memorizes coordinates of each unique element
located in the XML database. One-to-many relationships occur between any
particular patterns and their coordinates. Having to probe coordinates of patterns
with increasing size from the database is an expensive process. Fortunately, we
only need to do the coordinates probing once. Thus, having represented our data
in xstring format enables us to do the coordinates construction for C2, …, Ck
process more efficiently through level-wise coordinates expansion.
 As we all understand that with Apriori-based approach, the candidate
generation strategy produces candidates that logically and physically never exist
in the database. Their approach let the algorithm generates candidates through
join operations. Most of the constructed candidates will then be discarded at the
next stage as the algorithm locate that they have no existence in the database.
Our expansion strategy eliminates the need to generate redundant, meaningless,
and inexistence candidates as our approach takes advantage of the coordinates in
the xstring. For each of the tsi constructed from the database the coordinate
introduced conceptually adds visioning ability. With this visioning ability the
expansion can be done in a systematic and natural way. It grows the tsis
according to the XML tree model. In addition, our approach also considers I/O
optimization by early intersection of frequent 1-itemset with the databases. We
construct a hashing approach to suit our solution for applying association mining
to XML database using xstring as the hash key. One of our novel approaches in
attempt to bring the complexity of C2 into a manageable O(kn) complexity,
where for the worst case scenario k represents the depth of the tree and n the tree

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VI 289

size. The formal prove would be left explained in our future work. Throughout
the candidate generation process, the algorithm trims the string that contains
infrequent substring so that it adheres with the downward closure lemma [1].

2.2 Problem statement

XML data can be easily represented in a tree-like structure. A rooted tree is a tree
in which one of the vertices is distinguished from others, and called the root.
XML data is a rooted well-formed tree [4]. We refer to a vertex of a rooted tree
as a node of the tree. In case of XML data, node refers to tag. An ordered tree is
a rooted tree in which the order of the children of each node is important. XML
document frequently modelled using a labelled ordered tree. Because of the
space limitation, we leave readers to consult [4, 10] for some definition in
regards to tree structure includes ancestor-descendant relationship between tags.
Embedded subtrees are a generalization of induced subtrees [7]. They allow not
only direct parent-child edges, but also ancestor-descendant edges. Via
embedded subtrees, hidden pattern deep within large trees can be detected. In
this paper, we consider embedded subtree and induced subtree. The difference
between embedded subtree and induced subtree can be seen in [4, 10].
 Node position, scope and direct parent pointer. We denote a tree as T as
collection of nodes (N) and edges (E). The size of T, denoted as |T|, is the
number of nodes in T. Each node n ∈ N will contain a triplet with notation:
[pos, scopemax] (dpp), where pos is node position, scopemax is the right-most
descendant’s node position, and direct parent pointer (dpp) refer to its parent
node position. Each node position has an integer number, i, start from 0
following its position (coordinate) in depth-first (or pre-order) traversal of the
tree. The scope is defined as the descendant’s node position. The scope of node
is defined such as such as {(n,m) | n ≤ m, n, m is positive integer}. All nodes
within the scope of node n would be its children or descendants, except itself.
The second integer, m (scopemax), in scope pair describes the position of its right
most descendant according to pre-order traversal. For more details explanation of
how scope pair works reader can consult [10]. Also, to directly reference a parent
node of any particular node, a direct parent pointer (dpp) notion is introduced.
Having the triplet of node position, scopemax and direct parent pointer described
we can now interpret the triplet notation attached to each node. For example
node A has a triplet [0,5](-1), i.e. it is at position 0, with scopemax = 5 and have
no parent, -1. Node D has a triplet [2, 2](1), i.e. it is at position 2, with scopemax =
2 and its parent is located at position 1.
 XML document mining problem. The challenge of association mining is in
fact to have efficient and scalable process in discovering large itemsets [6, 9].
After all large itemsets discovered the generation of association rules can be
derived more straightforwardly. The paper concentrates on developing
discovering large itemsets and apply the technique to XML data (semi-structured
data). The problem of finding frequent patterns from XML data deals with tree-
like structure and to present associations among trees rather than simple-
structured items of atomic values. Consequently, a tree like structure and a

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

290 Data Mining VI

collection of tree-like structures with size k will be called a k tree-structured-item
(k-tsi) and a k tree-structured-itemset (k-tsi set).
 Let D denote a database of XML document (database of trees). Let S∴T
(read: T embed S) for some T ∈ D. Each occurrence of S can be identified by its
matched string, which is given as the unique set of sequence of string (in T) for
string in S. The string is constructed from the combination of XML elements,
attributes and values. More formally, let {t1, t2, …, tn} be the XML elements in
T, with |T| = n, and let {s1, s2, …, sm} be the XML elements in S, with |S| = m.
Then S has a match string {ti1, ti2, …, tim}, if and only if: 1) str(sk) = str(tik) for
all k = 1, …, m, and 2) edge e(sj, sk) in S iff tij, is ancestor of tik in T. The first
condition specifies that all nodes in S have a match in T, while the second
condition indicates that the tree structure or topology of the matching nodes in T
is the same as in S. Let δT(S) defined as the number of occurrences of the subtree
S∴T. Zaki [10] proposed two type of supports, weighted and non-weighted
support. Let σ(S) be the support of subtree S∴T. Our definition of support of
S∴T is defined as σ(S) = ΣT∈D δT(S), i.e. total number of occurrences of S over
all trees in T. This definition of support is equivalent to the weighted support
definition. A subtree S is frequent if its support is more than or equal to a user-
specified minimum support (σmin). Our goal in mining XML document is to
enumerate all frequent tsis in D given a user specified σmin value.

/* C1 Generation pseudo-code */
D = Transform_XMLtoXString(xml-filename);
min_support = s;
k = 1;
for each tag x in D {
 1-xstring = xstring(x);
 x-coordinate = getCoordinate(x);
 string-key = generateStringKey(x);
 hitem = hashitem(1-xstring, string-key, x-coordinate);
 insert(C1, hitem);
}

/* L1 Generation */
for each hashitem hitem in C1{
 if(count(hitem) >= min_support)
 insert(L1, hitem)
 else
 trimming(D, hitem) /* Trimming: D - h */
}
k++;
/* Ck Generation */
while(Lk-1.size() > 0){
 for each hashitem hitem in Lk-1 {
 for each coordinate c in hitem {
 base-xstring = getBase(hitem, c);
 string-key = getStringKey(hitem)
 generateCandidates(base-string, string-key, Ck, Lk-1, D);
 }
 }
 /* Generate k-Frequent Itemsets */
 for each hashitem hitem in Ck {
 if(count(hitem) >= min_support)
 insert(Lk, hitem);
 }
 k++;
}

Figure 1: Frequent sets generation pseudo-code.

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VI 291

3 X3-Miner algorithm
In this section, we present the pseudo-code of our algorithm in details. We
present our C2 generation approach and its complexity calculation. Continued
with our Ck generation approach and followed by updating backtrack approach.
Finally we present our k-trimming approach that validates each k-tsi against
downward closure lemma.

/* generateCandidates function */

generateCandidates(base-xstring, key-string, Ck, Lk-1, D)
{
 base-coordinates = getCoordinates(base-xstring);
 coord-size = length(base-xstring);
 parent-pointer = coord-size – 1;
 head = getFirstCoordinate(base-xstring);
 tail = getLastCoordinate(base-xstring);

 slot = tail;
 next-child-coordinate = (tail + 1);
 while(slot >= head)
 {
 end-child-coordinate = getScopeMax(D, slot);

 for(j = next-child-coordinate; j <= end-child-coordinate; j++)
 {
 newnode = getNode(D, j);
 if (isFrequent(newnode))
 {

 prefix-string = append(key-string, backtracks-string);
 newnode-string = generateStringKey(newnode);

 // Check if (k-1)substring including newnode-string is frequent
 if(IsFrequent(prefix-string, newnode-string, coord-size, Lk-1))
 {
 k-xstring = append(base-xstring, node, parent-pointer);
 newcoord = append(base-coordinates, getCoordinate(node));
 new-key-string = append(prefix-string, newnode-string);
 hitem = hashitem(k-xstring, new-key-string, newcoord);
 Insert(Ck, hitem);
 }
 }
 }
 next-child-coordinate = end-child-coordinate + 1;
 slot = findNextParent(slot);
 updateBacktracks(backtracks-string, parent-pointer);
 }
}

Figure 2: Candidate generation pseudo-code.
/* pseudo code for updating backtracks and direct parent pointer */
n = D[n]->GetDirectParentPointer();
current-dpp = SD[previous-dpp]->GetDirectParentPointer();
short hit;

if(current-dpp <= -1)
 hit = 1;
else
 hit = SD[current-dpp]->Equal(D[n]);

if (hit)
{
 previous-dpp = SD[previous-dpp]->GetDirectParentPointer();
 number-of-backtracks++;
 for(int i=0; i < number-of-backtracks; i++)
 {
 backtracks-string += "/ ";
 }
 previous-backtracks-string = backtracks-string;
}
else
 backtracks-string = previous-backtracks_string + "/ ";

Figure 3: Update backtracks.

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

292 Data Mining VI

4 Results and discussion

We tested our algorithm by using the same data type that is used by the
TreeMiner for the purpose of comparison. TreeMiner defines weighted and non-
weighted support. For the purpose of mining semi-structured type of data
weighted support is considered to be more appropriate.
 Zaki developed two variants of TreeMiner: VTreeMiner and HTreeMiner. He
reported in [10] that VTreeMiner execute the mining task at about 4 to 20 times
faster than HTreeMiner. However, apart from reported result our experiment
result shows that VTreeMiner reports all embedding subtree while HTreeMiner
reports all embedding subtree that contains only frequent subtree. In other words,
VTreeMiner doesn’t trim k-tsis that contain infrequent {(k-1), …, 0}-tsis (called
sub-tsis). Consequently, HTreeMiner does more processing to trim k-tsis that
contain infrequent sub-tsis. As the result, VTreeMiner not only faster than
HTreeMiner but also reports far more candidates than HTreeMiner. On the other
hand, our approach checks and trims all tsis that contain infrequent sub-tsis. The
experimental result shown below confirms our result with HTreeMiner.
 We also run the benchmarking on parallel Xeon processor PIII 1 GHz
machine with 1024 MB RAM. Some test results are presented below:

0

50

100

150

200

250

300

350

k =
1

k =
2

k =
3

k =
4

k =
5

k =
6

k =
7

k =
8

k =
9

k =
10

HTreeMiner (L)
HTreeMiner (C)
X3Miner (L)
X3Miner (C)

0

1000

2000

3000

4000

5000

6000

k =
1

k =
2

k =
3

k =
4

k =
5

k =
6

k =
7

k =
8

k =
9

k =
10

k =
11

k =
12

HTreeMiner (L)
HTreeMiner (C)
X3Miner (L)
X3Miner (C)

Figure 4: Graph of HTreeMiner & X3-Miner candidates generation. Vertical
& horizontal line representing the number of candidates & iteration
respectively.

 From the fig. 4 above it is shown that X3-Miner in overall generates less
candidates for the same number of frequent itemsets as TreeMiner. It can be

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VI 293

seen from the graph above that the difference between the candidates curve and
the frequent itemsets curve is smaller than the TreeMiner’s.

0

10000

20000

30000

40000

50000

60000

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 7

L
C

Figure 5: Graph of X3-Miner running dblp data (nodes = 123012).

article year[1984] / journal[J. Comb. Theory, Ser. A] - 71
article year[1993] / volume[11] / journal[Image Vision Comput.] - 66
article year[2003] / volume[19] / journal[Future Generation Comp. Syst.] - 120

Figure 6: Frequent items of dblp (nodes = 123012).

 On the other hand, the TreeMiner is a very efficient algorithm in mining
frequent tree structures within a forest. We compared our algorithm with
TreeMiner and the same frequent itemsets were detected. The difference lies in
the fact that our algorithm generated less candidates due to the model-validating
approach applied in comparison to generating candidates using the join operation
as done in most of the apriori based approach such as the TreeMiner. However
TreeMiner performed the task in less time.
 This gain in efficiency could be due to the assumed file structure in
TreeMiner where the tree is represented as a list of integers rather than an XML
document. Processing and hashing integers is more efficient than processing
strings. As our approach actually takes in XML documents as input and takes
care of the structure and the values of the attributes the implementation had to be
done in the way where strings were processed and hashed. Our observation
indicates that this is where the extra computational cost comes from.
Theoretically our algorithm should execute the task faster as it generates fewer
candidates at each step. The larger the number of the infrequent candidates
generated the more time needed for processing.
 With the XML data set we use a cut-down version of dblp.xml database with
123012 number of nodes. Fig. 6, shows some frequent tree structured items
represented in string representation. The result tells us that there are a significant
number of article published in year 2003 with volume 9 in journal of Future
Generation Comp. Syst. in the dblp file. So is with the number of article
published in Journal of J. Comb. Theory, Ser. A in 1984. In reality the two
algorithms are incompatible for efficiency comparisons due to different type of
data being processed. This caused different implementation issues as mentioned

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

294 Data Mining VI

above implementations differ because of different constraints imposed on the
type of data that is processed. Optimization will be the focus of our future works.

5 Conclusions

The main strength of the proposed approach is that the candidate generation is
model validating and so there is no time wasted in generating invalid candidates
that are discarded at a later stage. The algorithm can process an XML document
directly taking into account the values of the nodes present in the XML tree. The
frequent item-sets generated will contain node names and values in comparison
to the TreeMiner approach which only generates frequent tree structures and
does not process an XML document in the form that is mostly present. The
frequent item-sets generated by our approach are in the XML format that can be
interpreted as association rules supported by the minimum support provided by
the user. The current way the string representation of a sub-pattern is used as the
key in the hash multimap may be the cause for extra computational cost as we
include the values and names of each node and so when hashcode is calculated it
is more expensive. The algorithm is still performing candidate generation
efficiently on large XML documents but as frequent sub-patterns grow there will
be a large increase in the computational cost. Some of the immediate extensions
to the algorithm will be to investigate the bottleneck of performance and find a
more efficient way for storing and retrieving the formed candidate sub-patterns.
In the current work we have shown that candidate generation for XML
documents does not have to follow the traditional approach of performing joins
on frequent item-sets and in a sense generating all the possible candidates blindly
without consulting the document model. Moreover, from the theoretical
perspective it is always preferred to have a model based upon which reasoning is
validated. The major extensions to the current work will be to perform rule
extraction on the extracted interesting patterns from XML document. This will
improve the task as there will be no irrelevant patterns to interfere with the
learning mechanism.

References

[1] Agrawal, R., Mannila, H., et al., "Fast Discovery of Association Rules."
Advances in Knowledge Discovery and Data Mining, AAAI Press: 307-
328, 1996.

[2] Asai, T., Abe, K., et al., Efficient Substructure Discovery from Large
Semi-Structured Data. Fukuoka, Japan, Department of Informatics,
Kyushu University, 2001.

[3] Bayardo, R. J., Efficiently Mining Long Patterns from Databases.
SIGMOD' 98, Seattle, WA, USA, ACM, 1998.

[4] Feng, L., Dillon, T. S., Weigand, H., Chang, E., An XML-Enabled
Association Rule Framework. In Proceedings of DEXA 2003, pp 88-97,
Prague, Czech Republic, 2003.

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VI 295

[5] Feng, L. & Dillon, T. S., Mining XML-Enabled Association Rule with
Templates. In Proceedings of KDID 04, 2004.

[6] Han, J., Pei, J. & Yin, Y., Mining Frequent Patterns without Candidate
Generation. In ACM SIGMOD Conf. Management of Data, May 2000.

[7] Inokuchi, A., Washio, T., Nishimura, Y., & Motoda, H., General
framework for mining frequent patterns in structures. In Proceedings of
the ICDM-2002 workshop on Active Mining (AM-2002), pages 23–30,
2002.

[8] Kuramochi, M. & Karypis, G., Frequent Subgraph Discovery. IEEE
International Conference on Data Mining (ICDM), Mineapolis,
Department of Computer Science/Army HPC Research Center University
of Minnesota, 2001.

[9] Park, J. S., Chen, M.-S., et al., Using a Hash-Based Method with
Transaction Trimming for Mining Association Rules. IEEE Transactions
on Knowledge and Data Engineering 9(5): 813-825, 1997.

[10] Zaki, M. J., Efficient Mining of Trees in the Forest. SIGKDD '02,
Edmonton, Alberta, Canada, ACM, 2002.

[11] Zhang, J., Ling, T. W., Bruckner, R. M., Tjoa, A. M., Liu, H., On
Efficient and Effective Association Rule Mining from XML Data. In
Proceedings of DEXA 2004, LNCS 3180, pp. 497 - 507, Zaragosa, Spain,
2004.

© 2005 WIT Press WIT Transactions on Information and Communication Technologies, Vol 35,
 www.witpress.com, ISSN 1743-3517 (on-line)

296 Data Mining VI

