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Abstract

The most distinct characteristic of data mining is that it deals with large data
sets. This requires the algorithms used in data mining to be highly scalable. How-
ever, most algorithms currently used in data mining do not scale very well when
applied to very large data sets because they were initially developed and tested
upon smaller data sets. Today, we have such large data sets that these algorithms
are no longer efficient enough for mining and analysing. In this paper, we have
addressed a data clustering problem and developed a scalable algorithm, which
provides very high precision and recall values. This algorithm is used on a very
large real-world data-set, TDT2, and experimental results showed that this algo-
rithm performs well compared to traditional ones.

1 Introduction

Nowadays, people have great demand on knowledge and information, while
information overload becoming one serious problem. News media and publish-
ing industries therefore try to suit customers needs by using electronic informa-
tion management system. Document clustering algorithm has been introduced to
group similar documents together for easier searching and reading. Document
clustering algorithm has been widely used in news media and publishing indus-
try,which ensured it effectiveness over manual clustering. With labor cost reduced
and time saved, document clustering algorithms provides convenient clustered-
news for users.

Clustering is an important task that is performed as part of many text mining
and information retrieval systems. Clustering can be used for efficiently finding
the nearest neighbors of a document [1, 4], for improving the precision or recall
in information retrieval systems, for aid in browsing a collection of documents [2],
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for the organization of search engine results [2, 6], or for the personalization of
search engine results.

Recently there has been much interest in the problem of similarity search in time
series databases, which is our main insert in this paper. This is hardly surprising
given that time series account for much of the data stored in business, medical
and scientific databases. Similarity search is useful in its own right as a tool for
exploring time series databases, and it is also an important subroutine in many
KDD applications such as clustering [2, 4, 6], classification [5] and mining of
association rules.

Different document clustering methods have been examined. These conven-
tional clustering methods mainly consist of two parts: construction of a similar-
ity matrix between documents and formulation of clustering algorithm to generate
clusters.

2 Mining large datasets

In the present times we are witnessing an explosive growth in the amount of data
that is being collected in the business and scientific arena. Data warehouses are
filling up with huge amounts of data in every conceivable form. In most cases,
the sheer size of the datasets prevents the vast majority of the data from being
deeply analyzed. Often large portions may not have been examined at all. The
field of Data Mining (or Knowledge Discovery in Databases) attempts to develop
automatic procedures that search these enormous data sets to obtain useful infor-
mation that would otherwise remain undiscovered. Such new knowledge can take
the form of patterns, rules, clusters, or anomalies that exist in the massive datasets.
These discoveries could potentially be of great significance to scientific or business
organizations. Given the size and dimensionality of the datasets, high performance
algorithms and systems are an integral component of a successful data mining
solution.

2.1 The corpus

Throughout all experimental results given in this paper, the TDT pilot corpus was
used. There is about 16,000 stories, with half taken from Reuters newswire and
the other from CNN broadcast news transcripts. The transcripts are arranged in
chronological order, and structured in SGML format, and are available from the
Linguistic Data Consortium (LDC).

2.2 Heterogeneity of the data

Many steps are taken in the data pre-processing stage: heterogeneity resolution,
data cleansing, data transformation, and data reduction before any algorithm can
be introduced to produce quality clusters. In order to achieve data which we can
work upon, we apply some mining tools, which help in the extraction of patterns
from the pre-processed data.
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2.3 Preprocessing of data

One major drawback when mining such large amounts of data is that documents
contain a lot of words most of which are repeated. Using all the words in a col-
lection of documents to represent those documents would certainly result in high
inefficiency that could be eliminated with some pre-processing steps.

Before any clustering is performed, a sequence of preprocessing steps were
taken in order to optimize performance. The reason for those steps is to reduce
the number of words for mining. A list of those tasks follows next:(1)retrieve data
- from a variety of heterogeneous operational databases (TDT Pilot in our case), (2)
data is transformed and delivered to the data warehouse/store based on a selected
model (or mapping definition), (3) metadata - information describing the model
and definition of the source data elements, (4) data cleansing - removal of cer-
tain aspects of operational data, such as low-level transaction information, which
slow down the query times, (5) transfer - processed data transferred to the data
warehouse, a large database on a high performance box

2.3.1 Stop-word removal
Stop words are words that have no significant semantic content in the context in
which it exists. Stop words can also be words that have high frequencies across a
set of collection of document. A list containing all the stop words in a system or
application is referred to as a stop list. Stop words are not included as indexing
terms. For example, the words “the”, “on”, “with” are usually stop words.

2.3.2 Stemming
Stemming means reducing different word forms to common roots. The purpose
of stemming is to group words that are morphological variants on the same word
stem. For example, the words “Computing”, “Computer”, and “Computational”
all map to “Compute”. This has the advantages of eliminating suffixes indicating
tag-of-speech, verbs and/or plural forms; however, stemming algorithms employ
a great deal of linguistics and are language-dependent. This technique is also
known as suffix stripping or term truncation (van Rijsbergen 1979; Salton 1989).
In the English language, stemming is traditionally carried out by stripping off the
common suffixes, and the Porter and the Lovins stemmer are two widely used
implementations. The Lovins Stemmer, implemented within this system, removes
a maximum of one suffix from a word, due to its nature as single pass algorithm. It
uses a list of about 250 different suffixes, and removes the longest suffix attached
to the word, ensuring that the stem after the suffix has been removed is always
at least 3 characters long. Then the ending of the stem may be reformed (e.g.,
by un-doubling a final consonant if applicable), by referring to a list of recoding
transformations.

The value of stemming has been questioned in the past, but recent studies have
shown that stemming can produce consistent though small improvements in
retrieval effectiveness over a large range of collections. When dealing with rela-
tively short documents, stemming has even higher value. Since many of the
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documents we are dealing with are very short, this indicates that the use of a stem-
ming component could prove valuable.

3 Cluster analysis

Cluster Analysis, also called data segmentation, has a variety of goals. All relate
to grouping or segmenting a collection of objects (also called observations, indi-
viduals, cases, or data rows) into subsets or “clusters”, such that those within each
cluster are more closely related to one another than objects assigned to different
clusters. Central to all of the goals of cluster analysis is the notion of degree of sim-
ilarity (or dissimilarity) between the individual objects being clustered. There are
two major methods of clustering – hierarchical clustering and k-means clustering.
So why cluster again?. Cluster analysis divides data into groups (clusters) for the
purposes of summarization or improved understanding also. For example, cluster
analysis has been used to group related documents for browsing, to find genes and
proteins that have similar functionality, or as a means of data compression.

In hierarchical clustering the data are not partitioned into a particular cluster
in a single step. Instead, a series of partitions takes place, which may run from a
single cluster containing all objects to n clusters each containing a single object.
Hierarchical Clustering is subdivided into agglomerative methods, which proceed
by series of fusions of the n objects into groups, and divisive methods, which
separate n objects successively into finer groupings.

In this paper we present two of the different data mining techniques that were
used in the system. Both algorithms clustered various sized datasets and the scal-
ability, efficiency and accuracy of each was compared to one another. The algo-
rithms used were Single-link and two different hierarchical clustering methods,
utilising different variations of the cosine similarity function, mainly focusing on
the latter because agglomerative techniques are more commonly used.

3.1 Agglomerative hierarchical clustering

An agglomerative hierarchical clustering procedure produces a series of partitions
of the data, Pn, Pn-1, ....... , P1. The first Pn consists of n single object ’clusters’,
the last P1, consists of single group containing all n cases.

At each particular stage the method joins together the two clusters which are
closest together (most similar). (At the first stage, of course, this amounts to joining
together the two objects that are closest together, since at the initial stage each
cluster has one object.)

Differences between methods arise because of the different ways of defining dis-
tance (or similarity) between clusters. Several different types of cosine similarity
will be compared in detail in this paper.
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3.2 Single-pass clustering

One of the simplest agglomerative hierarchical clustering method is single linkage,
also known as the nearest neighbor technique. The defining feature of the method is
that distance between groups is defined as the distance between the closest pair of
objects, where only pairs consisting of one object from each group are considered.
In the single linkage method, D(r,s) is computed as D(r,s) = Min d(i,j) : Where
object i is in cluster r and object j is cluster s .

Here the distance between every possible object pair (i,j) is computed, where
object i is in cluster r and object j is in cluster s. The minimum value of these
distances is said to be the distance between clusters r and s. In other words, the
distance between two clusters is given by the value of the shortest link between the
clusters. At each stage of hierarchical clustering, the clusters r and s , for which
D(r,s) is minimum, are merged.

The approach is fairly fast and result in hierarchies where the closest nearest
neighbors are at lower levels of the hierarchy. However,it leads to non-balanced
clusters,and many node-node comparisons can have the same strength of similarity
thus many documents can be linked at the same level in the hierarchy.

3.3 Similarity analysis

One important issue in our approach is the problem of determining the right simi-
larity function. The critical property of the similarity function is its ability to sep-
arate stories that discuss the same topic from a given query documents from those
that have different related topics.

We must first compute the tf*idf of each test dataset. This score is defined as fol-
lows: For each term i in a document j, we compute the term frequency of i in j, i.e.
the number of occurrences of i in j (tf i,j). We then compute the inverse document
frequency of term i by taking the log of the ratio of N, the number of documents
in our corpus, to the document frequency of i, i.e. the number of documents in
which term i occurs (dfi). A term which occurs in all documents will have inverse
document frequency 0. A term which occurs very often in one document but in
very few documents of the corpus will have a high inverse document frequency
and thus a high tf*idf score, and is thus a strong candidate for being a term that
characterizes the content of the document.

We next represent each document by a vector made up of the tf*idf score wi for
each term i. By comparing these vectors, we can arrive at a quantitative measure
of the similarity of two texts to one another. The most interesting metric for these
purposes seems to be the cosine similarity measure, defined as the dot product of
the two vectors divided by the product of the length of the vectors. The cosine
similarity measure of two texts varies from 0 (no terms in common) to 1 (every
term in both texts has the same tf*idf score).

We will look at three different functions of the Cosine Similarity function in this
paper: Euclidean, Raw Cosine and my own function.
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3.3.1 Cosine similarity
Cosine similarity is a classic measure used in IR, and is consistent with a vector-
space representation of stories. the measure is simply an inner product of two vec-
tors, where each vector is normalized to unit length.

Cosine seems to perform best at full dimensionality, as in the case of comparison
of two long stories. Performance degrades as one of the vectors becomes shorter.
Because if the normalization, cosine is less dependent on specific term weights,
and performs well when raw word counts are presented as weights.

Definition 1 Euclidean similarity
Given the vector space defined by all terms in the document pool and the query,

compute the Euclidean distance z between each document d and the query q. The
similarity between d and q, if M is the maximum distance for all documents in the
pool, is 1 - ( z / M). Euclidean similarity is always computed with Normalization
= false and TFMode = 0.

Definition 2 Raw cosine similarity
Given that df(i) is the frequency of term i in a document, and qf(i) is the fre-

quency of term i in a query, raw cosine similarity is defined over all terms occur-
ring in both the document and the query as:

We must first compute the tf*idf(F)of each test dataset. This score is defined as
follows: For each term i in a document j, we compute the term frequency of i in
j, i.e. tf(j,i). We then compute the inverse document frequency of term i by taking
the log of the ratio of N, the number of documents in our corpus, to the document
frequency of i, i.e. the number of documents in which term i occurs df(i).

RawCosineSim =
∑n

1=n df(i) ∗ qf(i)
(
√

(
∑n

1=n df(i)2) ∗ (
√

(
∑n

1=n qf(i)2))
(1)

However, our version of the “Raw Cosine similarity” makes a difference that
achieves a higher accuracy in document retrieval. By using the tf*idf scores for
elements of each vector, it computes the entire dot product of the two vectors and
not just the dot product of the similar sections as in “Raw Cosine similarity”. So
the dot product is:

SC-Cosine =
∑n

1=n F (i)2(df(i) ∗ qf(i))
(
∑n

1=n F (i) ∗ df(i)2))1/2 ∗ ((
∑n

1=n F (i) ∗ qf(i)2))1/2
(2)

We propose an explanation for these results that is based on an analysis of the
clustering algorithm specified by equation(2) and the nature of document data.
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3.4 Detection of threshold

Despite the fact that keywords are not always good descriptors of contents, most
existing search engines still rely solely on the keywords contained in documents
and queries to calculate their similarity. This is one of the key factors that affect
the precision of the search engines. In many cases, the answers returned by search
engines are not relevant to the user’s information need, although they do contain
the same keywords as the query. To study the effect of different Cosine functions
in conjunction with the Single-link algorithm and our algorithm, that of Scat-
ter/Gather [2] incorporated with SC-Cosine ,we calculated the percentage of recall
and precision under different threshold values. To detect this optimal threshold, we
evaluated a set of experimental datasets, varying from 50 up to 1600 documents. It
was found that 0.21 was the threshold that we received the greatest accuracy when
calculating the precision and recall for these clusters.

• Scatter/Gather + SC-Cosine (dataset size = 1600 documents)

Threshold 0.15. 0.17 0.21 0.21 0.22 0.23 0.26 0.3 0.31

Precision 0.67 0.71 0.93 0.89 0.88 0.85 0.79 0.83 0.74

Recall 0.31 0.42 0.48 0.47 0.46 0.46 0.44 0.43 0.42

• Single-Link with Raw Cosine Similarity (dataset size = 1600 documents)

Threshold 0.12 0.15 0.16 0.17 0.19 0.21 0.23 0.25 0.27

Precision 0.48 0.49 0.53 0.52 0.47 0.45 0.45 0.44 0.40

Recall 0.58 0.62 0.78 0.75 0.59 0.58 0.56 0.55 0.51

4 Results analysis

Many experiments were carried out with document sets of different sizes which
were taken from the above-mentioned corpus.Precision and recall have been and
continue to be very useful measures of performance for information retrieval and
extraction. Precision deals with substitution and insertion errors while recall deals
with substitution and deletion errors. Performance metrics are based on Recall and
Precision,which are defined as follows:

In Event Not in Event

InCluster A B

NotinCluster C D

Recall = A/(A + C)ifA + C > 0 (3)

Precision = A/(A + B)ifA + B > 0 (4)
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Because of our desire to have a single measure of performance that deals with
all three types of errors simultaneously, the F-measure was defined [3]. The F-
measure is defined as:

F -measure = 2(PR)/P + R (5)
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Figure 1: Harmonic Mean.

In Figure 1 the graph shows that both recall and precision values decrease with
increasing threshold. The performance of such algorithms as Single-Link and our
algorithm, Scatter/Gather [2] with SC-Cosine implemented, is better when the
threshold is smaller. When tested on the 6th dataset (1600 documents) the pre-
cision values obtained rise as the threshold increases until it reaches a peak at the
threshold level of 0.21. The precision obtained at this peak is 0.93, which is higher
that previous experiments, averaging about 0.8/0.84 [4]. Recall exhibits a similar
trend and peaks at the same threshold value of 0.21, a recall value of 0.48. The
recall value calculated for threshold values from 0.2 up to 0.4 are seen to slowly
drop, but after 0.4 there is a dramatic decrease in the values. From Figure 1, we can
see that the Harmonic Mean is at a peak at 0.21. Above this threshold we notice a
slow decrease, because as we increase the data size, there is an increased chance
of data been not similar and been wrongly added to existing clusters, resulting in
a lower precision/recall. This leads to the conclusion that it is at this threshold of
0.21 that the most accurate results are achieved.

5 Conclusion

After several experiment were carried out, using up to 1600 news articles from the
corpus, we notice that when using such large amounts of data, the threshold can
drop dramatically by changing the threshold throughout. Our results are relatively
close to the results of TDT Pilot study, however, the accuracy of our approach, in
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relation to Precision and Recall at the optimum threshold, is a significant improve-
ment.
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