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Abstract

In this paper, reliable methods for clustering erroneous and incomplete data per
se (e.g. without imputation) are considered. For this purpose, the usual K-means
algorithm is generalized by using robust location estimates and special projection
technique. Numerical comparison of the resulting methods with simulated data are
presented and analyzed.
Keywords: robust clustering, erroneous and incomplete data, K-means.

1 Introduction

Clustering, by definition, is a descriptive technique, which is widely used, for
example, in statistics, machine learning, pattern recognition, data mining (DM)
and Knowledge Discovery in Databases (KDD) [1, 2, 3, 4, 5, 6]. Undoubtedly, it
can be considered as a core method of DM and KDD, but the number of different
clustering methods is huge. The main idea behind all of these methods is to group
similar objects into the same cluster and dissimilar objects into separate clusters.
Similarity (or dissimilarity) is measured by a suitable distance function. However,
clustering is a challenging task since it includes many choices, such as, the deci-
sion between basic approaches (hierarchical, partitioning, density-based, model-
based, grid-based, fuzzy etc.), the selection of an initialization method, the choice
of a distance measure, and fixing of a cluster representation technique. These all
are dependable on the nature of that particular context, in which the method is
intended to be applied. The variety of application fields is also remarkable.

Although efficient systems for data gathering have been developed, most of col-
lected real-world data sets use to be incomplete and erroneous [7, 6]. Robust tech-
niques are by construction more suitable to such data sets and better quality of
results compared to traditional clustering methods can be expected. However, as
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usually, nothing is for free, since the price to pay for the robustness is usually
increased costs in computation.

The well-known K-means algorithm (see, e.g., [1]) works as a reference method
for this study. It is a prototype-based partitioning clustering method, whose popu-
larity is based on simplicity and implementability. Although it is computationally
efficient, it is also very sensitive to all kind of defects in the data and to initial con-
ditions. K-means has also been applied to initialization of computationally more
expensive algorithms (e.g., EM-algorithm [8]). Also many variants of K-means
have been developed, for example, fuzzy k-means [3], GKA [9], FGKA [10], K-
Harmonic Means [11] and the global k-means algorithm [12].

Based on K-means, two robust algorithms will be derived in this paper by replac-
ing the sample mean with a robust multivariate estimator. Since missing data values
are present in most real-data sets, restricting all computation only to available data
values (c.f. [13]) was chosen as a strategy to handle computation in the presence of
missing data. Notice that a similar approach was also presented by Estivill-Castro
and Yang in [14], but with different algorithmic details and without taking into
account the possibility of missing data values.

2 Estimation of location and robust statistics

One of the main problems in prototype-based clustering is the correct and accurate
estimation of cluster prototype location in a multivariate space. The estimation
of a prototype for a cluster consisting of one or more data points means that for
the whole cluster, one value is computed, which is supposed to represent all data
within the cluster. A number of different estimates are presented in the statistical
literature (see, e.g., [15, 16, 17]).

Let X = {x1, . . . ,xN} be a sample of multivariate random variable x ∈ R
n.

Throughout the paper, we denote by (v)i the ith component of a vector v ∈ R
n.

Without parenthesis, vi represents one element in the set of vectors {vi}. The
lq-norm of a vector v is given by

‖v‖q =

(
n∑

i=1

|(v)i|
q

)1/q

, q < ∞. (2.1)

The most frequently used choice is the l2-norm,which isalso known as the Euclidean
norm.

Next we will turn our attention to the robust estimation of a location parameter.
The presentation follows the one given by Kärkkäinen and Heikkola [18]. Now,
let’s consider the following family of optimization problems:

min
u∈Rn

J α
q (u), for J α

q (u) =
1

α

N∑
i=1

‖u− xi‖
α
q . (2.2)

By restricting the consideration to the three cases q = α = 2, q = α = 1 and
q = 2α = 2, three optimization problems yielding three different estimates will
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be formulated. As pointed out in [18], the two latter cases lead to nonsmooth opti-
mization problems [19], which means that they can not be described by using the
classical (C1) differential calculus.

By choosing q = α = 2, the problem returns to the quadratic least-squares prob-
lem. In this case, the unique solution for problem eqn. (2.2) is found by enforcing
the gradient ∇J 2

2 (u) =
∑N

i=1(u − xi) to zero, in which case the coordinatewise
mean (average) m = 1

N

∑
i∈N xi of a given sample is obtained. Problems with

the sample mean are due to its high sensitivity to outliers, which means that it may
be significantly disturbed by even small amounts of inconsistent data.

2.1 Robust estimation of location

The need for robust estimates results from the existence of outlying and contami-
nated data values in real-world data sets. They use to be a stumbling block of the
sample mean because of its lack of robustness. Non-robust estimates are typically
sensitive to outliers and erroneous values.

Let us define the key concepts first. According to Huber [15] robustness signifies
"insensitivity to small deviations from the assumptions". Barnett and Lewis [20]
define an outlier as "An observation (or a subset of observations) which appears
to be inconsistent with the remainder of that set of data". A contaminant is defined
as "an observation from some other distribution"[20]. There are many, although
quite obvious, reasons why real-world data sets contain contaminants and outliers.
Human errors during data acquisition or faults in measurement devices and data
storage systems are probably the most typical ones. Probability of these aforemen-
tioned defects must be taken into account by system developers while developing
reliable DM and KDD tools.

An important measure of robustness is breakdown point. Barnett and Lewis [20]
define the breakdown point as "the smallest proportion of contamination, which
can carry the value of the estimator over all bounds". More formally it can be
defined by the following equation (e.g., [16]):

ε(µ̂;X) = inf{
m

N
: Bias(m, µ̂) = ∞}, (2.3)

where m is the number of contaminated data points and µ̂(X) an estimator from
X.

For example, the breakdown point of the multivariate sample mean is 0% [17].
This means that only one outlying data value can have arbitrarily large effect on
the estimator, which, in turn, clearly reflects the high sensitivity to outliers. The
breakdown point can never be higher than 50%, because for larger fraction of
contaminated data it becomes impossible to know, which part of the data is "good"
or "bad".

2.1.1 Sample median
To formulate the problem of the sample median, we choose q = α = 1 in eqn.
(2.2) leading to the minimization of the sum of l1-norms. As mentioned above, this
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is actually a nonsmooth optimization problem and the subdifferential of the cost
function is given by:

∂J 1
1 (u) =

N∑
i=1

ξi where(ξi)j = sign((u − xi)j). (2.4)

The sign-function sign(u) is defined such that sign(u) = −1 for u < 0, sign(u) =
1 for u > 0 and sign(u) = [−1, 1] for u = 0. The solution of the problem is
the coordinatewise median. In practice, it is a set of middle values taken from a
coordinatewise ordered sample set. The solution is unique for odd N , but for even
N , all points in the closed interval between the middle values satisfy eqn. (2.4). In
this case, an appropriate single choice for a prototype (used e.g., in MATLAB) is
the average of the middle values.

The coordinatewise sample median is a nonparametric estimate of the popula-
tion median [17]. As shown, the idea is to estimate the median of each variable
separately. Although the sample median is a robust estimate of location (break-
down point as high as 50%) and straightforward to compute, it has some unde-
sirable properties. First, it suffers from the lack of rotational invariance. Another
remarkable drawback is that the coordinatewise median does not have to lie in the
convex hull when samples are drawn from R

n for n ≥ 3. An illustrative example
is a case of three n-dimensional data vectors x1 = 1, 0, . . . , 0, x2 = 0, 1, . . . , 0
and x3 = 0, 0, . . . , 1 [17, p.250]. The coordinatewise median of the given sample
is now m = 0, 0, . . . , 0, which is neither inside the convex hull of the sample nor
very representative estimate for the data vectors.

2.1.2 Spatial median
Now we choose q = 2α = 2 that leads to the computation of the spatial median
(a.k.a multivariate L1-median or Weber point [16]), which is also a nonsmooth
optimization problem. The gradient of the convex cost function f(u,xi) = ‖u −
xi‖2 is well-defined and unique for all u �= xi. However, the case u = xi leads
to the use of a subgradient, which is characterized by the condition ‖ξ‖2 ≤ 1. The
whole subgradient for eqn. (2.5) reads as

∂J 1
2 (u) =

N∑
i=1

ξi, with

{
(ξi)j =

(u−xi)j

‖u−xi‖2

, for ‖u− xi‖2 �= 0

‖ξi‖ 2 ≤ 1, for ‖ u − xi‖ 2 = 0
(2.5)

When datapoints { x1, . . . ,xN}belong to Euclidean space and they are not collinear
(not concentrated on a straight line), the spatial median is unique [21]. In the
collinear cases, the spatial median collapses to the one-dimensional coordinate-
wise median, which means that it still exists, but it may not be unique.

As seen from the eqn. (2.5), the spatial median is obtained by projecting the data
points {x1, . . . ,xN} on a candidate unit sphere centered at u and moving u so that
finally the average of the projected values lies at the center of the sphere (the sum
of the projected vectors is zero). By projecting the data on the unit sphere, only
the directions of the data vectors effect on the result and each data point will be
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equally weighted. This decreases the sensitivity of a location estimator to outliers
and requirements for the amount and quality of data.

3 Prototype-based partitioning clustering

The basic idea of prototype-based partitioning clustering is to assign all data points
to their closest prototypes, update the prototype locations and use them as new
representatives for the clusters. K-means is the best-known method of this class. It
is used as a reference method for other algorithms in this paper. Its popularity is
based on low computational costs and simplicity. The time complexity of K-means
is O(ndKT ) where n is the number of data points, d is the number of features, K
is the number of clusters, and T is the number of iterations [3]. It also consumes
less memory than, for example, hierarchical clustering methods, because it does
not exploit a dissimilarity matrix in computation [22].

The K-means algorithm consist of four main steps. First, it must be initialized
with cluster centers. The basic iteration proceeds such that each data point is first
assigned to its closest center and secondly, the cluster centers are updated by com-
puting the sample mean for each cluster. This is repeated until the selected stopping
criteria is met.

Actually the K-means algorithm is a splitting method for solving an optimiza-
tion problem. K-means partitions the sample X into K disjoint subsets C1, . . . , CK

such that for each xi, which is assigned to a particular subset Ck

the Euclidean distance d(xi,mk) between the data point and the mean mk of the
subset Ck is minimized. A common definition for the K-means optimization prob-
lem is [23, 24]:

min
m1,...,K∈Rn

Je, for Je(m1, . . . ,mK) =
1

N

N∑
i=1

‖xi −R(xi)‖
2, (3.1)

where

R(xi) = argmin
k∈{1,...,K}

‖xi − mk‖
2. (3.2)

Function R(xi) ∈ {m1, . . . ,mK} ⊂ R
n determines which cluster prototype mk

is closest to xi.
Although K-means is a popular algorithm with some good properties, it suf-

fers from a few significant drawbacks [25, 8]. The most significant is the lack of
robustness related to the estimation of cluster prototypes. It presumes symmetrical
and Gaussian shape of all cluster density functions. From this it follows that large
amounts of clean data are needed. Therefore, the focus of this study is on the esti-
mates of cluster prototypes. By substituting the sample mean with a robust alterna-
tive, such as the coordinatewise median or the spatial median, new prototype-based
clustering methods with more robust behavior are developed.
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3.1 Robust prototype-based partitioning clustering algorithms

To put into use the aforementioned robust estimators the K-means algorithm is first
generalized. The general algorithm does not define the used distance measures and
prototype estimators. The algorithm includes the following steps:

1. Choose a distance function denoted by d(u,v).
2. Choose a cost function denoted by J α

q (u) for the cluster prototype estima-
tion.

3. Initialize cluster prototypes ui, ∀i ∈ 1, . . . , K.
4. Assign each data item in data set X to its closest cluster center according to

distance function d(u,v).
5. Recompute the cluster prototypes by minimizing cost function

J α
q (ui) ∀i ∈ {1, . . . , K}.

6. If the stopping criterion is satisfied then stop. Otherwise repeat from step 4.
Some alternatives for the stopping criterion are:

• argmax
k∈{1,...,K}

|miter
k − miter−1

k |∞ ≤ ε

• Number of reassignments between clusters.
• Decrease in the overall error measured using a suitable norm.

Two robust algorithms, namely K-medians and K-spatialmedians, are developed
by applying the aforementioned robust estimators to the general algorithm. As a
measure of distance between two data vectors u and v the Euclidean distance,
given by ‖u− v‖2, is utilized.

In order to deal with incomplete data sets, a strategy for the missing data treat-
ment must be embedded into the formulae. Since we do not want to be involved
in making hypotheses on the distributions of unknown clusterwise data, we chose
to apply a strategy, which employs only available data values in the calculation of
distances and location estimators [13, 26]. From this it follows that all computa-
tions of distances are restricted to existing fields of the original data. Therefore,
the optimization problem eqn. (2.2) will be generalized for missing data cases by
using a projector technique.

A convenient way to indicate the available data is to define a projector which
separates the missing and existing values:

(pi)j =

{
1, if (xi)j exists

0, otherwise

By further denoting Pi = Diag{pi} we can redefine the family of optimization
problems given in eqn. (2.2):

min
u∈Rn

J α
q (u), for J α

q (u) =
1

α

N∑
i=1

‖Pi(u− xi)‖
α
q . (3.3)

Exactly similar projector technique can be applied to distance calculation.
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Figure 1: Left: A plot of the test data set, in which three clusters of size ten are
well-separated. Right: The dirty test data set, in which four data values
(appr. 6.67 percent of the whole data) are randomly distorted.

4 Experiments

All the algorithms were tested and compared on a small artificial 2-d data set.
The test data consists of 30 data points that were obtained by taking three sam-
ples of size ten from the Gaussian distribution such that each sample composed
a well-separated data cluster (see Figure 1). To make sure the correctness of the
algorithms in optimal conditions, they all were tested on the complete and clean
data containing well-separated clusters. To compare robustness against outliers and
missing data, four of the overall 60 data values (30 observations times 2 variables)
were disturbed and thus transformed into outliers (Figure 1) and, moreover, 10%,
30% and 50% of data values, in turn, were removed.

The tests were run on MATLAB 6.1. environment. To solve the optimization
problem for the spatial median estimator, conjugate gradient (CG) and golden sec-
tion (GS) method were implemented [27]. The update of search direction in CG
was realized using Polak-Ribiere method. To find the exact solutions for the final
cluster prototypes Nelder-Mead algorithm [28] was utilized.

The maximum norm of cluster displacement was used as a stopping criterion
in each algorithm (see Section 3.1). The tolerance was set at 10−3. The stopping
criteria in CG was defined as ‖uk − uk−1‖∞ ≤ 10−6 and, in GS, as ‖uk −
uk−1‖2 ≤ 10−8, where uk is the solution after kth iteration.

Each algorithm was tested with 100 different random initialization for cluster
prototypes on each data sets. Accuracy and correctness of the results was compared
and evaluated visually by presenting the error distributions for all results (for all
100 test runs) using histograms. The errors were calculated by assigning each of
the obtained cluster prototypes to the closest original cluster center. Note that each
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Figure 2: Error distributions from 100 test runs on the original complete data set.
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Figure 3: Error distributions from 100 test runs on the complete data set with out-
liers.

original prototype captures one, and only one, estimated prototype.

4.1 Results

Let’s finally consider the results. As it is shown in Figure 2, no significant differ-
ence in the accuracy of K-means, K-medians and K-spatialmedians was found for
clean data. All the algorithms give very good results for such data set.

Next, the clustering algorithms were tested on the data set containing the out-
liers, but no missing data. The results are illustrated in Figure 3. As it can be
seen, the accuracy of the algorithms was decreased due to addition of the out-
liers. However, clear differences can be observed between K-means and the robust
algorithms. K-means produces good results with only 50% probability, whereas
for K-medians and K-spatialmedians the same probability is almost 90% and they
perform almost identically.

Removing 10 % of data seems to impair increasingly the accuracy of K-means
(see Figure 4). Approximately half of the test runs produced significant errors.
The accuracy of K-medians and K-spatialmedians also decreased in comparison
to the test runs on the complete data with the outliers, but approximately 80 %
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Figure 4: Error distributions from 100 test runs on the incomplete data set (10% of
values missing) with outliers.
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Figure 5: Error distributions from 100 test runs on the incomplete data set (30% of
values missing) with outliers.

of the results were still at the best level and almost none of them were poor. No
significant difference was found for the robust algorithms.

To further stress the robust algorithms, the portion of missing data was increased
to 30%. The results are illustrated in Figure 5. Obviously, the efficiency of K-
means is not anymore feasible. Almost all of the results are unsatisfactory. The
results of K-medians and K-spatialmedians were again quite identical. The results
were even better when compared to the two previous cases, but it can be interpreted
as a coincidence. However, it shows that even third of the data may be lost without
significant influence on the accuracy of the robust algorithms. Finally, Figure 6
presents the averages and medians of the errors produced by the algorithms. Con-
sidering the median error of K-means one can observe that one half of the results
suffers from significant error, when more than 10% of data is missing and outliers
are present.

The definite contribution of the outliers to the weak performance of K-means
may be deduced by comparing the errors produced by K-means against the errors
of the two robust algorithms. Figure 6 shows that for K-means the average error,
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Figure 6: Averages and medians of the error for the methods.

when 10%-50% of data is missing.
Although the median errors of K-medians and K-spatialmedians do not vary

much according to percentage of missing data, the average quality of the results
impairs somewhat.

5 Conclusions

The data mining algorithms contains inherently a number of adjustable parameters
that are difficult to understand by an ordinary end user. Therefore, such algorithms
that are adjusted to the target environment in advance are needed. Our long-term
goal is to develop robust clustering algorithms that are able to handle noisy and
incomplete data sets with a minimal number of user interventions. Although esti-
mation of the correct number of clusters was not considered in this paper, it is one
of the main issues related to data clustering [1].

The main goal of this paper was to apply and test robust estimators in prototype-
based partitioning clustering algorithms. The results were encouraging. The robust
variants of the clustering algorithms performed much better in the cases of dirty
and missing data. Since large part of the test runs with the robust procedures pro-
duced good results, even if 10%-50% of the data were missing and 7% distorted,
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we expect that careful initialization of the algorithms allows one to achieve appro-
priate clusters with high probability. It is also noticeable that the performance of
K-spatialmedians and K-medians distinguished slightly from each other. However,
this result is not considered totally unexpected, since the test data was sampled
from two-dimensional distributions. The weakness of the coordinatewise sample
median may not appear until in higher dimensional problems (see Section 2.1.1).
To deal with large data sets, relative to the number of dimensions and observations,
the current algorithm for computing the spatial median is inefficient, but the results
encourage us to further develop faster variants for this purpose.
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