@i Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Modeling dynamical systems by recurrent
neural networks

H.G. Zimmermann & R. Neuneier
Information and Communications, Corporate Technology,
Siemens AG, Germany.

Abstract

We present our experiences of time series modeling by finite unfolding in time.
The advantage of this approach is that the set of learnable neural network functions
is restricted by a set of regularization methods which do not constrain the essential
dynamics. Keywords in this section are over- and undershooting, the analysis of
cause and effect, and the estimation of the embedding dimension in a partially
externally driven dynamic system.

1 Introduction

Standard analysis of dynamic systems by feedforward neural networks translates
the time series identification problem into a pattern recognition approach. Typi-
cally, the first step in such an analysis looks for an appropriate description of the
present time state which can be used as an input vector. This is usually very tricky
because one has to consider many preprocessing techniques (necessary time lags,
smoothing transformations, using derivatives of data, etc.). Then, the central iden-
tification problem is solved by relying on the universal approximation property that
a sufficiently large three layer neural network can in principle model any continu-
ous function on a compact domain [1]. However, if we use such a task independent
approach, the characteristics of the available data determine the quality of the re-
sulting model. We believe that this is a misleading point of view, especially if the
amount of useful information that can be extracted from the data is small. For ex-



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

558 Data Mining I

ample, the amount of data is too small in comparison to its dimensionality, data is
very noisy, available data does not sufficiently cover the input space and so forth.
Instead of using simple pattern recognition, we propose a framework of recurrent
networks which incorporate prior knowledge of the dynamic systems we want to
model via extended network architectures.

Using the architecture in section 2, we propose a finite unfolding in time as an
implementation for recurrent neural networks. Then, in section 3, we develop the
overshooting technique which generates additional information useful for decision
support systems and which also improves the learning. We discuss the conse-
quences of overshooting on partially external driven dynamic systems. In section
4 we question if the time grid of the model has to be the same as the time grid of
the data. The network of section 4 is a realization of a model which has a finer time
grid than that of the observed data. This leads to important dynamic properties of
the resulting model.

2 Representing dynamic systems by recurrent networks

The following set of equations (eqns (1)), consisting of a state and output equation,
is a recurrent description of a dynamic system in a very general form for discrete
time grids.

sy = f(s—1,u4;) state transition

()]
o= g(s) output equation

The state transition is a mapping from the previous internal hidden state of the

system s,_; and the influence of external inputs u, to the new state s,. The output
equation gives rise to the observable output vector y;.

The identification task eqn (1) can be implemented as a time-delay recurrent neural
network:

s = NN(s—1,u;;v) state transition
2
yi = NN(s;;w) output equation.

By specifying the functions f, g as neural networks with parameter vectors v, w we
have transformed the task into a parameter identification problem:

1 & 2 .
T Y (y, - y;’) — min 3)
=1

LAY

The dynamic system consisting of the two equations eqns (2) can be implemented
as the one neural network architecture as shown Fig. 1. The weights are v = {4,B}



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data Mining I 559

Figure 1: A time-delay recurrent neural network.

and w = {C}. In general one may think of a matrix D instead of the identity matrix
(id) between the hidden layer and s,. This is not necessary because for a linear
output layer s, we can combine matrices A and D to a new matrix A’ between the
input s, and the hidden layer. Note that the output equation NN (s;; w) is realized
as a linear function. It is straightforward to show by using an augmented inner
state vector that this is not a functional restriction.

After these definitions the next section describes a specific neural network imple-
mentation of time delay recurrent networks.

Now we unfold the network of Fig. 1 over time using shared weight matri-
ces A, B, C (Fig. 2). Shared weights share the same memory for storing their
weights, i. e. the weight values are the same at each time step of the unfolding (see
[2,3,4,5,6] for approaches which also share weights).

Figure 2: Finite unfolding realized by shared weights A, B,C.



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

560 Data Mining Il

The approximation step is the finite unfolding which truncates the unfolding after
some time steps (for example, we choose ¢ — 4 in Fig. 2). The important question
to solve is the determination of the correct amount of past information to include in
the model of y,. Typically, you start with a given truncation length (in our example
we unfold up to t — 4). Then you can observe the individual errors of the outputs
Yi—4,Y1-3,Y1—-2,¥1—1 and y; computed by eqn (3) which usually are decreasing from
left (y,—4) to right (y;). The reason for this observation is that the leftmost output
Yi-4 is computed only by the most past external information u,_4, the next output
y,—3 depends also on its external #,_3 but it uses the additional information of the
previous internal state s5,—4. By such superposition of more and more information
the error value will decrease until a minimal error is achieved. This saturation level
indicates the maximum length of time steps which contribute relevant information
to model the present time state.

Knowing e. g. that the saturation takes place at + — 1 we achieve an unfolding
with memory of past time steps t — 3,---,7 — 1 and the information of present time
step t. Now, in order to achieve a consistent model we have to disconnect the
internal flow of error signals generated by the outputs from y,_3,y,-2,y;—1 (see
Fig. 3). Otherwise, the shared weight matrices A, B,C would receive inappropriate
gradient information due to different dependencies over time. For example, y;_3
only learns a mapping from u,_3 whereas y, is trained on (1, -+, u,-3).

Figure 3: Finite unfolding assuming error level saturation within three time steps.

Having in mind that we are finally interested in forecasting we should ask ourselves
what are the improvements of the modeling up to now. If y, is a description of
the shift of a variable (e. g. a price shift y, = p,+1/p, — 1 in a financial forecast)
we predict the target variable one step ahead. Thus, the result of the model in
Fig. 3 is only a sophisticated preprocessing of the inputs u,_3,---,u; t0 generate
a present time state description s, from which the forecast y, is computed. In
contrast to typical feedforward neural networks whose success heavily depends
on an appropriate, sometimes very complicated, preprocessing, our approach only
needs a simple transformation of the raw inputs x; in form of a scaled momentum



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data Mining I1 361

as in eqn (4).

u; = scale (x—lj—l—_—l—> : @

Xi—1

This releases us from smoothing the data or computing first and higher order mo-
ments of the shift variables.

A further advantage of the recurrent preprocessing (Fig. 3) is the moderate usage
of free parameters. In a feedforward neural network an expansion of the delay
structure leads automatically to an increase of the number of weights. In the recur-
rent formulation (Fig. 3) only the shared matrices A, B are reused if more delayed
input information is needed. Additionally, if weights are shared more often, then
more gradient information are available for learning these weights. As a conse-
quence, potential over-fitting is not so dangerous as in the training of feedforward
networks. Or to say it in other words: due to the inclusion of the temporal structure
into the network architecture, our approach is applicable to tasks where we have a
small training set.

Finally, we discuss a numerical difficulty of the unfolding in time procedure. In
typical backpropagation algorithms, the error flow from y, has to pass the nonlinear
transformation tanh many times due to the hidden layers on the way from the past
input u,_+ to y;. It is well known (see also the chapters of Bengio and Hochreiter)
that the error signal decays in such long sequences of transformations s,_«,- -, s;.
The following learning rule eqn (5) overcomes those numerical difficulties which
otherwise make it very difficult to find long term inter-temporal structures. For
every weight we apply the local adaptation

n

V(g — g)zg'

with g; as the gradient from training pattern 7 and g = + ¥,_ g as the averaged
gradient over an epoch. In [7] it is shown that this learning rule behaves like a
stochastic approximation of a Quasi Newton method. The learning rate is renor-
malized by the standard deviation of the stochasticity of the error signals. This
rescaling avoids the continuous shrinking of the error information through the hid-
den layer transformations.

AW}Z_

&)

3 Overshooting

An obvious generalization of the network in Fig. 3 is the extension of the au-
tonomous recurrence in future direction # + 1,7+ 2,---. We call this extension
overshooting (see Fig. 4). If this leads to good predictions we get as an output a
whole sequence of forecasts. Especially for decision support systems, e. g trading
system in finance, this additional information is very useful.



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

562 Data Mining 11

Figure 4: Overshooting is the extension of the autonomous part of the dynamics.

In the following we show how overshooting can be realized and we will analyze
its properties. First, we discuss how far into the future good predictions can be
achieved. We iterate the following: train the model until convergence, if over-
fitting occurs, include the next output (here y,+1) and train it again. Typically
we observe the following interesting phenomenon: If the new prediction y;.4k+1
can be learned by the network, the error for this newly activated time horizon will
decrease. But in addition the test error of all the other outputs y;,- -,y Will
decrease too because more useful information (error signals) is propagated back to
the weights. We stop extending the forecast horizon when the error is not longer
reducible or even starts to increase.

The most important property of the overshooting network (Fig. 4) is the concate-
nation of an input driven system and an autonomous system. One may argue that
the unfolding in time network (Fig. 3) already consists of recurrent functions and
that this recurrent structure has the same modeling effect as the overshooting net-
work. This is definitely not true because the learning algorithm leads to different
models for each of these architectures. Backpropagation learning usually tries to
model the relationship between the most recent inputs and the output because the
fastest adaptation takes place in the shortest path between input and output. Thus,
learning mostly focuses on u,. Only later, learning also extracts useful information
from input vectors u,_ which are more distant to the output. As a consequence the
unfolding in time network (Fig. 3) tries to rely as much as possible on the part of
the dynamic which is driven by the most recent inputs u;, - - - ,u; <. In contrast, the
overshooting network (Fig. 4) forces the learning by the additional future outputs
(Y41, -+) to focus on modeling an internal autonomous dynamic. Overshooting
therefore allows us to extend the forecast horizon.

The dimension of s, in the state transition equation (eqn (1)) represents the embed-
ding dimension of an autonomous dynamic subsystem. In such a case, the unfold-



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data Mining 11 563

ing network (Fig. 4) is able to extract the correct size of the embedding dimension
using pruning techniques. The embedding dimension of a partially autonomous
system is typically underestimated by the network architecture of Fig. 3. How-
ever, the overshooting network (Fig. 4) learns the correct dimension size because
it is forced to learn long term inter-temporal dependencies.

4 Undershooting

This section describes the implementation of a refinement of the time grid by re-
current neural networks. An obvious example is shown in Fig. 5 which can be
interpreted as a weekly model using monthly data.

Figure 5: Refinement of the time grid by recurrent neural networks.

While training this network of Fig. 5 only the outputs at time step # and ¢ + 4 gener-
ate error signals because only those targets are available. Due to sharing the output
connectors C we are able to compute the other weekly outputs y,y1,¥1+2,¥+3. We
call the usage of a finer time grid for modeling a dynamic system undershooting.
This tecﬁnique can generate useful additional information for decision support sys-
tems (e. g. automatic trader).

We now propose a special case of undershooting architectures. These models are
not focused on the computation of additional output information but are directly
related to the considerations on nearly continuous causality.

We illustrate this by an example from economics, but the approach can be applied
to any forecast task. Let us assume that we want to forecast a price shift one step
ahead In(p,+1/p:) (to the first order since In(1+ x) = x, this is equivalent to the
relative change of p,). For the moment we ignore the delayed inputs, i. e. all of the
input information is now given by u,. The input %, is transformed by the matrix
B to initialize the recurrent network. If we introduce 5 intermediate time steps in
the dynamic systems description we get the architecture of Fig. 6, top. In contrast
to our first example in Fig. 5, this network cannot be trained because none of the



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

564 Data Mining 11

targets ln(ﬂ;’t—:}g/ﬁ),k =0, --,5 is available.

The redesign leading to the architecture of Fig. 6, bottom, solves this pfoblem of
missing targets by exploiting the identity:

5
In (”_’t‘> =¥ (p——’+("+”/6> : ©6)
Pr k=0 Pr+k/6

Py, Y% P, % pt+ 3% pt+ 4% Py, % Pia
'"< P, > l"<pt+1/6> l"<"t+2/6> l"<pt+3/6 Py pt+5/6>
A

Figure 6: The transformation in the lower part allows to train the network even if
the intermediate targets are not available.

Assuming finite step sizes, the architecture resembles the way ordinary differential

equations are solved. For example, if we want to compute a dynamics at discrete
time steps, the finite step forecasting is

Si+1 = F(St) . (7)



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
: © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X
Data Mining 11 565

Let us further assume, that the dynamic law is given by:

ds '
5= (s). (3)

To bridge the gap between z and # + 1 we have to integrate the differential equation
by:

1+1
Sre1 = 51 / FO)dC. ©)

This procedure is realized in a similar way by the network architecture in Fig. 6,
bottom. First, we describe the dynamics for small time intervals of 1/6 units.
Then, we add up (analog to what an integral does in the limit) all the intermediate
shifts of eqn (6) to compute the one step ahead forecast.

We have successfully used this network design with up to 12 intermediate time
steps. In such long sequences of hidden layers it is important to use the learning
rule eqn (5).

Now, we integrate the delayed inputs which we have ignored so far. If we start
again with the network design of Fig. 5, we input into the network rare shocks
because intermediate input information is not available. On the other hand if we
design the input part analogously to Fig. 6 we loose information by adding up the
partial inputs (see Fig. 7). The shared weights B transmit at every intermediate
time step only an average information to the recurrent dynamics. However, by our

Figure 7: Input design for undershooting networks.

experience the latter approach of Fig. 7 is superior to the approach in Fig. 6. We
prefer the use of only one input vector u, as shown in Fig. 6, bottom, if there are
only a few delayed inputs. If one has to use many time lags {u;,u,_1,...}, it is
more useful to apply the architecture of Fig. 7 instead of integrating the delayed
inputs in the state description u, because this increases the number of weights in
B. Indeed, the use of more and more delayed inputs can be achieved with constant
number of weights in the network architecture of Fig. 7.



Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)
© 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

566 Data Mining 11
5 Conclusion

We believe that recurrent neural networks supply a very promising framework for
the solution of forecasting problems. The key point of building a successful model
is the inclusion of structural prior knowledge which can effectively be achieved by
extending the network architecture.

Furthermore, this approach allows to integrate many different methods including
a nonlinear generalization of Hidden Markov Models and to tackle new questions
which can not even be expressed without recurrent neural networks.

The described algorithms and architectures are integrated in the Simulation En-
vironment for Neural Networks, SENN, a product of Siemens AG. More in-
foramtion can be found on the web sites http://www.senn.sni.de and
http://www.data-mart.de.

References

[1] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359-366, 1989.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-
sentations by error propagation. In D. E. Rumelhart and J. L. McClelland,
editors, Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, volume I: Foundations, pages 318-362. MIT Press/Bradford
Books, Cambridge, MA, 1986.

[3] P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in
the Behavioural Sciences. PhD thesis, Harvard University, 1974.

[4] R.J. Williams and D. Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2):270-280, 1989.

[5] S. Haykin. Neural Networks. A Comprehensive Foundation. Macmillan
College Publishing, New York, 1994. second edition 1998.

[6] J. L. Elman. Finding structure in time. Cognitive Science, 14:179-211,
1990.

[7] Ralph Neuneier and Hans Georg Zimmermann. How to Train Neural Net-
works. In Neural Networks: Tricks of the Trade, pages 373—423. Springer
Verlag, Berlin, 1998.



