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Abstract

A scheduled railway system that operates according to a cyclic timetable
naturally exhibits a cyclic (periodic) behaviour. In a max-plus algebra set-
ting such a system can be modelled as a linear (discrete event) dynamic
system. The computation of a timetable then reduces to solving an eigen-
value problem for which efficient algorithms have been developed. Moreover,
the max-plus algebra system theory contains stability analysis and simula-
tion facilities. This paper shows that the max-plus algebra approach offers
an efficient interactive timetable design framework which directs attention
to the critical components in the railway system.

1 Introduction

An operational timetable must be robust to uncertainty in train run-
ning times and corresponding arrival delays. A too tight schedule
results in missed transfers and/or perturbations in train movements.
Connection buffer times between arrival and departure times of con-
nected trains reduce arrival delays and increase transfer reliability.
Both from an operational and passenger point of view. However,
again from both perspectives connection times should not be too
large since this results in an increase of travel times and rolling stock
demand, and a reduction of capacity utilization. The determination
of optimal connection times solving this dilemma is thus of major
concern for all parties involved: passengers, process operators, and
train service providers.
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340 Computers in Railways

Mathematical programming offers an obvious approach for solv-
ing timetable design problems. The problem is then to find optimal
feasible arrival and departure times satisfying a set of constraints
such that an objective function (e.g., the sum of expected transfer
waiting times) is minimized. The constraints correspond to lower
and/or upper bounds on, e.g., running times, connection times and
headways. The resulting problems are mixed integer program (MIP)
problems, see for instance [2, 6, 9, 10, 11]. However, solving these
various problem formulations is computationally very hard for large
networks. In fact these MIP problems are all TVP-complete. This is
inherently due to the periodicity of the cyclic timetable which results
in objective functions and/or constraints that are relative to modular
arithmetic (addition and subtraction are modulo the cycle time). For
large complex train service networks as in the Netherlands this leads
to intractable problems.

Dynamic system theory offers an alternative approach for mod-
elling railway systems. The periodicity is here implicitly contained in
the dynamic equation describing the interactions between the various
train movements. The dynamic behaviour of railway systems is nat-
urally event driven. Events (e.g., train arrivals and departures) are
subject to precedence constraints. Such systems are discrete event
dynamic systems (BEDS) which can be modelled using the max-plus
algebra [3, 7]. Stability and robustness can efficiently be analysed in
max-plus algebra systems [3]. Moreover, a max-plus algebra model
can be used to simulate delay propagation in the service network.

Recently, it has been shown that computing a timetable equals
solving an eigenvalue problem in the m ax-plus algebra [3]. Within
the m ax-plus algebra framework a timetable designer has thus the
opportunity to compute candidate timetables, analyse their stabil-
ity, and simulate delay propagation to test sensitivity/robustness to
delays.

This paper shows how train service networks can be modelled
as m ax-plus algebra systems and describes an efficient approach to
design timetables.

2 The Precedence Graph

The main problem in the design of timetables for a train service
network is the scheduling of connections between individual trains
at transfer stations. This paper therefore assumes that the running
times between transfer stations, including the stopping times at in-
termediate stops, are known and concentrates on the connections.
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Computers in Railways 341

Of interest is not the physical railway network but the connection
network or precedence graph. This is a network representation of

precedence constraints.

The precedence graph is a directed graph consisting of a set of n
nodes and a set of m arcs. The nodes corresponds to trains or train
departures at transfer stations, and the arcs represent precedence
constraints corresponding to connections between trains at transfer
stations. A connection is either a physical connection or a transfer
connection. A weight a^ is assigned to each arc (i, j) corresponding to
the sum of the running time t\ of train i and the connection time from
train i to j. Here, the connection time is either a stopping time t*- or
a transfer time (or changeover time) t^-. The fact that a weight a^
corresponds to an arc (j,i} may be confusing at first sight. However,
in Section 4 it will be shown that by doing so, the railway system can
be formulated as a familiar linear system x(k + 1) = Ax(k).

Figure 1 shows an example train service network consisting of two
transfer stations 5\ and 62 and 4 routes (the routes are indicated in
bold numbers). Intermediate stops along the routes have not been
drawn. The system has three lines (train series): a line serving route
1, a line connecting the transfer stations in both directions (serving
routes 2 and 3), and a line serving route 4. The weights at the arcs
indicate the running times of the routes, and the weights around the
nodes (transfer stations) indicate the minimum stopping or transfer
times between the arriving and departing arcs. So, trains circulating
on the routes 2 and 3 have a minimum stopping time of 1 minute at
the transfer stations, and trains of route 1 and 4 have a stopping time
of 3 minutes at the transfer stations. The minimum transfer times are
all 2 minutes. Figure 2 shows the corresponding precedence graph.

We assume that the graph is strongly connected, i.e., there is a
(directed) path between any node i to any node j, where a path is a se-
quence of adjacent nodes (without any repetition of nodes). If this is
not the case then the graph can be partitioned into strongly connected
subgraphs which are treated separately. Note that a strongly con-
nected graph inherently contains circuits, where a circuit is a (closed)
path where the end points coincide. The weight of a circuit is the sum
of its arc weights, i.e., the sum of running and connection times. As
an example, the graph of Figure 2 contains 6 circuits. The circuit of
the successive nodes 1-3-4-2-1 has weight 52 + 43 + 28 + 44 = 167. The
occurrence of circuits makes cyclic timetable design nontrivial: the
circuit weights must equal an integer multiple of the cycle time [11].

The cycle mean of a circuit is the average trip time on the circuit,
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342 Computers in Railways

Figure 1: The train service network

Figure 2: The precedence graph

i.e., the ratio of circuit weight and length, where the circuit length
is the number of arcs (trains) in the circuit. For example, the cycle
mean of circuit 1-3-4-2-1 has cycle mean 167/4 = 411. A critical
circuit is a circuit with maximum cycle mean (where the maximum
is taken over all circuits). The maximum cycle mean of the graph in
Figure 2 is 53 corresponding to circuit 1-1.

Note that the minimal interdeparture time of trains on the crit-
ical circuit equals the circuit's (maximum) cycle mean for suitable
chosen departure times. The critical circuit is thus the 'slowest' cir-
cuit in the train service network. This implies the following important
observation. The maximum cycle mean is the critical cycle time, or
minimum cycle time, of the (overall) timetable.

3 Discrete Event Railway Systems

A discrete event dynamic system description of a railway system is
easily obtained from the precedence graph.

Consider the precedence graph. Assign to each node i a departure
time X{. This departure time depends on the arrival time from the
train's preceding trip as well as on the arrival times of its feeder
trains. The earliest possible departure time of a train i is therefore
formally given as

max
.7 = 1,...,n (1)

where a^ is defined as the sum of the running time ft, and the stop-
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Computers in Railways 343

ping time tj- or transfer time t^ between trips j and i, respectively,

ft + t*jj if train j physically equals train i

ft + t^ if train j is a feeder train of train i (2)

— oo otherwise.

Note that assigning — oo to trains that are not connected to train i im-
plies that these trains can also be incorporated in eqn (1) since these
entries have no influence on the maximization (as long as other trains
have finite entries). The trains j for which G^J ^ — oo correspond to
the predecessors of node i in the precedence graph.

We are concerned with a cyclic timetable. Therefore the depar-
ture times are periodic recurrent events. Let k be a counter denoting
a specific period. Then the fcth departure time of a train series i is
Xi(k). Incorporating the periodicity in eqn (1) gives

Xi(k + 1) = max (â - + Zj(fc)) , i=l,...,n. (3)

The departure time of a train i thus depends on former departure
times of the preceding trains. In general a train may also be connected
to a train that departed two or more periods before. However, this
situation can be reduced to eqn (3) by using an augmented precedence

graph, see Section 6.
If the train service network operates according to a timetable

then a train may not depart before its scheduled departure time.
However, if the train is behind schedule, or has to wait for a delayed
feeder train, then the actual departure time may exceed the scheduled
departure time. Denote the scheduled departure time of a train i from
a transfer station as d{. Then the scheduled train service network can
be described as

Xi(k + 1) = max (an + xi(fc), . . . , a™ + %n(&), di(k + 1)) , (4)

for i — 1, . . . , n. The subsequent scheduled departure times for train
i are given as

where T is the cycle time and di(0) is an initial departure time.
A timetable naturally contains connection buffer times defined

as the intervals between the earliest possible departure times and the
scheduled departure times at transfer stations. From eqn (4) follows
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344 Computers in Railways

that the connection buffer time TJ{ between an arriving train j and a
departing train i is

If initial departure times #i(0),. . . , #n(0) are given then the evo-
lution of the railway system (3), or the scheduled railway system (4),
is completely determined, i.e., the subsequent departure times of all
trains are uniquely fixed. These systems are examples of Discrete
Event Dynamic Systems (DEDS). Here, a discrete event is a depar-
ture at a transfer station that occurs at a discrete instance in time,
the departure time, and the dynamic equation, eqn (3) or eqn (4),
describes the dynamic behaviour over the successive periods k. The
above described systems are deterministic. If the parameters a^j also
depend on the period k then the system is stochastic. The subsequent
running and connection times are then variable.

4 Max-Plus Algebra

Eqn (3) contains the two operations maximization and addition which
makes it nonlinear in a linear algebra sense. However, with a change
of notation eqn (3) can be written as a linear system. For this, denote
maximization as 0, and addition as (x). Thus, x 0 y = max(x,t/) and
x ® y = x + y. Then eqn (3) becomes

n
Xi(k+ 1) = @(a,ij ® Xj(k)), i = l,...,n, (6)

j=i

where ®^_jXj = max(xi, . . . ,x^) denotes repeated maximization. In
vector notation eqn (6) is written as

%(&+ 1) = A®%(&), (7)

where x = (#1, . . . ,£̂ )' and A is the square n X n matrix whose ijih
entry is a^. Note the resemblance with linear algebra where a matrix

equation b = Ax is defined as 6, = Ẑ Li(̂ 'j * %j) for i — 1,. ..,?%.
Of course, this is no coincidence. Eqn (7) is a linear system in the
max- plus algebra.

The max- plus algebra is like the conventional linear algebra but,
as introduced above, the addition is replaced by maximization, de-
noted as ®, and multiplication is replaced by the conventional addi-
tion, denoted as ®. The set of elements considered in the max- plus
algebra are the real numbers IR and the additional element 6 := — oo.
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Computers in Railways 345

Note that the elements a^ defined in eqn (2) belong to this set. The
extension to vectors is equivalent to the linear algebra: the addition
of two vectors is defined componentwise and matrix equations are

defined analog to eqn (6). Concepts from linear algebra and linear
system theory have their counterparts in the max-plus algebra [1, 5].
This paper does not give an extensive treatment of the max-plus
algebra but restricts to illustrate its potential in the application to
railway timetable design. The max-plus algebra modelling and (sta-
bility) analysis of (scheduled) railway systems is due to Braker [3],
see also Goverde et al. [7].

The railway system (3) is thus a linear system in the max-plus
algebra which in matrix notation is x(k +1) = A® x(k] or simply
x(k + 1) = Ax(k). The matrix A is called the state matrix and the
vector x is the state vector. For example, the matrix A corresponding
to the precedence graph of Figure 2 is

I 53 44 c (

c e 42 28

52 43 f e

\ € 43 29

(8)

Also the scheduled railway system (4) is a linear system in the max-
plus algebra,

z(6 + 1) = Az(&) @ d(6 + 1), (9)

where d — (di,. . . , ĉ)'.

5 Critical Cycle Time and Timetable

The critical cycle time of railway system (7) is the minimum cy-
cle time for which a realizable timetable exists. The corresponding
timetable is a vector of scheduled departure times for all trains. The
main advantage of the max-plus algebra modelling is the following
result: the critical cycle time and timetable of the railway system
are equivalent to the eigenvalue and eigenvector of the A matrix of
eqn (7), respectively.

Let A be a square matrix in the max-plus algebra. Consider the
eigenvalue problem: find a scalar A and a vector v = (vi, . . . , t>n)' 7^
(c,..., e)' such that

^®r = A®r. (10)

If this equation has a solution then A is called the eigenvalue and v
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346 Computers in Railways

an eigenvector. In conventional algebra eqn (10) becomes

max (aij + Vj) - X + Vi, i - l,...,n. (11)
j = l,...,n

This equation can be interpreted as follows. Assume that v is the
vector of departure times in the present period. Then the earliest
possible departure times in the next period (the left-hand side of
eqn (11)) equals a constant A added to the present departure times
(the right-hand side of eqn (11)). The eigenvalue is thus the critical
cycle time for which a cyclic timetable exists and the eigenvector v
is a timetable for which this critical regular behaviour is satisfied.
Note that the eigenvector is not unique: (conventional) addition of a
constant to all components Vi also gives a vector satisfying eqn (11).

A main result in the max-plus algebra system theory is the fol-
lowing. If the precedence graph G(A) is strongly connected then
there exists a unique eigenvalue and at least one eigenvector, and the
eigenvalue equals the maximum cycle mean of G(A). Note that Sec-
tion 2 already showed the interpretation of the maximum cycle mean
as critical cycle time.

The example state matrix A has eigenvalue A = 53 and eigenvec-
tor v = (12,0,11,1)' which can easily checked by eqn (11).

The eigenvalue, the eigenvector, and the corresponding critical
circuit can be computed by an (extended) power algorithm [4, 3].
The computational complexity depends on the transient behaviour
of the system [3, 5]. Karp's Algorithm [8, 3] efficiently computes the
eigenvalue and critical circuit in O(nra) time, where n and ra are the
number of nodes (trains) and arcs (connections) in the precedence
graph, respectively.

6 A Timetable Design Approach

This section describes a timetable design approach for computing
stable timetables for a minimum amount of rolling stock.

It is assumed that a line system is given. A line is a route be-
tween two terminal stations on which trains run with fixed frequency
and serve given stops along the route. A line system consists of all
lines characteristics and a set of connections between individual lines
at transfer stations where the lines meet. Moreover, it is assumed
that the running times between transfer stations (including stopping
times at intermediate stops), and the minimum stopping times and
minimum transfer times at the transfer stations are predetermined.
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Computers in Railways 347

A timetable designer has to compute a timetable with a desired

cycle time T, e.g., T - 30 minutes. A matrix A can be denned
from the line system data by eqn (2) which results in the max-plus
algebra railway model (7). Computing the eigenvalue of A gives the
minimum possible cycle time A. If T > A then this implies that with
the present amount of trains it is not possible to operate according
to a timetable with cycle time T. Therefore, an additional train has
to be assigned to the system such that A decreases.

Consider an edge (j,i) on the critical circuit in the train service
network. Add a node I between node j and i and replace the arc (j, i)
with two arcs (j,/) and (/,%), and divide the original arc weight a^
over the new arcs. This node / can be interpreted as follows. In a
particular period k, train j has a connection to train / at a fictitious
station (with zero connection time), and the next period this train
/ has a connection to train i. In this way, train i has to wait for
a train j with a departure of two periods before, i.e., the departure

time Xi(k + 1) must be not earlier than Xj(k - 1) + aij.

The assignment of an extra train to the critical circuit results in
a smaller cycle mean of this circuit (recall that the cycle mean is the
ratio of the total circulation time on the circuit and the number of
circulating trains on the circuit). Now, for the matrix correspond-
ing to the augmented precedence graph a new critical circuit can be
computed with corresponding maximum cycle mean. The process of
adding an extra train to the critical circuit of the subsequent aug-
mented precedence graphs repeats until an eigenvalue is obtained for
which A < T. For the resulting railway system a realizable timetable
exists with cycle time T. This approach results in a timetable that
utilizes a minimum amount of rolling stock.

A timetable can be computed as the eigenvector of the augmented
state matrix A (with corresponding eigenvalue A). Using the cycle
time T instead of A results in connection buffer times (5) which im-
plies that the timetable is stable: connection buffer times reduce delay
propagation in the service network. The resulting scheduled railway
system (9) can be analyzed on performance by means of stability
analysis and/or simulation of the propagation of delays. If perfor-
mance should be improved then extra trains can be assigned to those
lines that are part of circuits in the train service network where delay
reduction is not satisfactory.

The candidate timetable can still be tuned by adjusting the ar-
rival times within the existing slack of running time margins and
connection buffer times without consequences to the cycle time and
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348 Computers in Railways

(1>

Figure 3: The augmented precedence graph, 1st iteration

14
-w—i&v
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(D

Figure 4: The augmented precedence graph, 2nd iteration

stability.
As an example, we will compute a timetable with cycle time

T = 30 minutes for the railway system of Figure 1 with state matrix
A given in eqn (8). The eigenvalue of A is A = 53 corresponding to
the critical circuit 1-1. We assign an extra train to the train series
circulating on route 1. With respect to Figure 1, this corresponds to
a fictitious station on route 1. Figure 3 shows the augmented prece-
dence graph. The system now contains 5 trains. The new maximum
cycle mean is A = 42| corresponding to circuit 2-3-2. Assigning an
extra train to the train series circulating on routes 2 and 3 gives
the augmented precedence graph of Figure 4. The railway system
now contains 6 trains and the new maximum cycle mean is A = 29
corresponding to circuit 4-4. Thus, a timetable can be computed
with a minimum cycle time of 29 minutes with 6 circulating trains.
A timetable can be computed as the eigenvector of the augmented
state matrix corresponding to the precedence graph of Figure 4. This
gives

d= (1,15,0,16,2,16)'.

The first four components of this vector are the scheduled departure
times of the train series at the transfer stations. The last two com-
ponents are dummy departure times at the fictitious stations corre-
sponding to the auxiliary trains. These are necessary for the max-plus
algebra (simulation) model (9). Additionally to the state vector x of
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Computers in Railways 349

the departure times of all trains in the system (including auxiliary
trains), an output vector y can be defined consisting of the departure

times of the trains from (physical) transfer stations only. In this way,

the user is not bothered with the auxiliary variables.

7 Conclusions and Future Research

A stable timetable can be computed efficiently using a power algo-
rithm. Moreover, a critical (minimum) cycle time can be computed
for which a realizable timetable exists with respect to the number of
trains assigned to the lines (train series). Addition of trains to lines
that are part of a critical circuit decreases the critical cycle time of
the network. This can be used to design realizable timetables with a
minimum amount of rolling stock and an optimal distribution of the
rolling stock to lines with respect to sensitivity to delays.

Present research focusses on the computation of optimal connec-

tion buffer times within the max-plus algebra framework.
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