
IMPROVING RAIL NETWORK SIMULATIONS  
WITH DISCRETE DISTRIBUTIONS IN ONTIME 

BURKHARD FRANKE, DAN BURKOLTER & BERNHARD SEYBOLD 
TrafIT Solutions GmbH, Switzerland 

ABSTRACT 
To analyse a rail network’s punctuality and the operational quality of a timetable on a network-wide 
scale an advanced simulation is needed. Whereas most simulations use a Monte Carlo approach, we 
calculate delay distributions analytically and thus need only a single calculation run. Previously we 
used exponential distribution functions as they map the status in railway operations well and are suited 
for efficient calculation of delays. The resulting delay distributions due to primary delays along a train’s 
itinerary as well as delay propagation from other trains is handled by convolution of these distribution 
functions. However, as the resulting distributions become more complex, a simplification step is needed 
from time to time to keep calculation times reasonable. Increased requirements for the accuracy of the 
simulation model and improvements in the computational potential led us to remodel the delays with 
discrete distributions. This has two main advantages. First, restrictions on the possible form of primary 
delays are much smaller compared to the previous exponential distributions and second, the 
simplification step is no longer needed, which increases accuracy considerably. We discuss the different 
options of distribution modelling and their use in railway applications. 
Keywords:  railway, simulation, delay distribution modelling, operational quality, punctuality. 

1  INTRODUCTION 
The analysis of the operational quality of a timetable is usually based on the examination of 
operational data covering the trains and their respective delays in a time interval. Common 
quality parameters to describe the performance of railways are key figures like punctuality, 
mean delays, or the variation of arrival times. Looking at the whole set of data reveals the 
stochastic nature of delays: The deviations can be best described as distributions as Fig. 1 
shows for the example of the graphic timetable of planned and realised train runs over several 
weeks. The actual train runs are distributed around the scheduled train path depending on 
their delay characteristics on any recorded day. 
     The characteristics of the delay distributions will be different for every train, station, and 
time of day or time of year, as the underlying reasons for delays vary. Those reasons can be 
differentiated in primary delays (caused by external sources) and secondary delays (passed 
on due to train interaction), which will be discussed in Section 2.  
     Based on our experience with delay analysis and timetable improvement, our principal 
insight is that a railway timetable will unavoidably experience a certain level of disturbance 
and this level of disturbance can best be described as distributions of (primary) delays. It is 
therefore reasonable to assess the operational quality of a future timetable on a given 
infrastructure by applying distributions of (primary) delays on every train and simulate delay 
propagation and delays reduction, as this replicates the situation a timetable will experience 
during its existence (the timetable period). This idea was developed amongst others in the 
thesis of Büker [2] and is the basis of what was implemented as the tool OnTime. A 
description of OnTime and its methodical advantages is part of Section 3. The main topic of 
this paper is the modelling of distributions in OnTime’s calculation kernel. Section 4 outlines 
the development of the modelling and reviews the reasons for and the implementation of a 
discrete modelling of distributions in OnTime. The paper is concluded in Section 5. 
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Figure 1:  Visualisation of operational data [1]. 

2  ON DELAYS AND OPERATIONAL QUALITY  
Railway operations are vulnerable to delays as variability in operational process times and 
unexpected disruptive events lead to deviations from the planned timetable [3]. These 
deviations are called primary delays to discern them from secondary delays, which result 
from the interaction of trains and the propagation of delays. This differentiation helps to 
understand and counteract train delays. It is also the conceptual basis for the simulation tool 
described in the next section since a model cannot deduce the primary delays but must 
reproduce the interaction of trains and the consequences thereof.  
     However, these thoughts on primary and secondary delays do have the problem that 
operational delay data as presented in Fig. 1 do not differentiate between delay reasons as 
only the resulting delay can be directly measured. From our experience only few railways are 
able to identify primary delays, best known to us are studies in Switzerland by Labermeier 
[4] and Schranil [5]. The latter analysed the distribution of primary and total delays in the 
SBB network.  
     Although the shape of the distribution is probably SBB-specific, two findings are common 
to both papers: 

 Small (primary) delays are frequent, large delays are rare. 
 Very small delays are often recorded incorrectly or even neglected.  

     The first statement seems trivial, but even data presented in Fig. 2 does not support this 
completely. Whereas primary delays of 3 minutes are more frequent than primary delays of 
4, 5 or more minutes, delays of 1 or 2 minutes hardly seem to occur at all. Our explanation 
for this phenomenon is given in the second statement: the recording of such small delays is 
often not correct. This is partly due to railway companies’ regulations on how to record delays 
in the first place and partly due to difficulties in measuring small delays as records are often 
a spin-off product of the rail control system. Reports usually rely on the delay causes given 
by railway operators who are obliged to record a delay cause for delays exceeding a defined 
threshold. What happens below the threshold mostly stays in the dark.  
     Common sense says that the declining tendency of the frequency of larger delays has its 
continuation with smaller delays being more frequent: severe weather conditions causing a 
minute of running delay are less likely than weather conditions causing 30 seconds of delay. 
Large crowds of passengers delaying departure by 40 seconds are less frequent than crowds  
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Figure 2:  Density function of primary and total delays according to Schranil [5]. 

of passengers delaying a train by 20 seconds. This is backed by detailed analysis for instance 
by Yuan [6], who investigated train movement on the level of the rail control system. A 
similar approach was used by Labermeier [4], and both analyses end up focussing on delays 
in the range of seconds to few minutes, as these are the most frequent ones.  
If we break down the general findings to particular locations or trains, the pattern is repeated 
as is shown in Fig. 3, small delays and – depending on the amount and allocation of margins 
– even small early arrivals are more frequent than larger deviations. 
 

 

Figure 3:  Histogram, fitting curves, and kernel estimate for arrival delays of a train [6]. 
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     Fig. 3 also shows some fitting curves for modelling the delays mathematically, a topic we 
cover in Section 4.  
     So, although individual disturbances cause discrete primary delays, the timetable over a 
timetable period is subject to a kind of random noise of disturbance. The distribution of this 
random noise is characteristic for each railway – a product of weather conditions, 
maintenance level, and other historic and current circumstances. For a realistic reproduction 
of operational quality, we need to use proper distributions of primary delays. As we do not 
know where disturbances will occur and which trains will be affected in a future timetable, 
we must apply a delay distribution on every train everywhere on its itinerary. This is the idea 
behind the stochastic simulation tool OnTime. 

3  THE TOOL ONTIME 
In 2011 SBB commissioned the development of a tool to complement their existing 
microscopic, deterministic simulation tool. The so-called “Stabilitätsmodell” (stability 
model) was meant to simulate the complete network to evaluate timetables and infrastructural 
measures for short- to long-term planning. This tool should not construct or change a 
timetable but evaluate a given timetable in its entirety regarding chosen punctuality measures. 
To win the tender the two companies TrafIT Solutions GmbH, Zurich, and VIA Consulting 
& Development GmbH, Aachen, joined forces to implement the tool OnTime based on 
research at RWTH Aachen by Weidner and Büker [7] and later Büker [2] and in use at 
railways such as SBB or DB 

3.1  The application 

OnTime (see Fig. 4) is designed to work as a complement to an existing timetabling tool as 
it imports timetables via standardized exchange formats and has no integrated planning 
capabilities or running time calculator. This is mostly because the first railways using the tool 
did not want to have “another running time calculator”, as keeping all necessary data up to 
date in several tools is quite costly and different calculators will always differ in running 
times at least to some degree. OnTime therefore depends on a timetable system to export a 
timetable with all the necessary data, most notably the differentiation between minimal 
running times and running time reserves, which can be used to reduce delays. Information on 
connections and turn-arounds are either imported or generated in a preprocessing step. 
OnTime uses a rule-based modelling [8] to represent the infrastructure properties, which 
allows working with the different microscopic or macroscopic levels of detail in different 
planning horizons for infrastructure. Primary delays can be provided either as default 
distributions for the whole network or specified for certain stations and sections, times, and 
trains or types of trains. The primary delay distributions are simply defined by giving a 
probability of delay and the average delay in case of delay and are differentiated between 
stopping, departing, and running delays. A set of input data – a scenario – forms an activity 
graph [1] for a selected day of operation. Trains accumulate delays incurred from primary 
delays as well as delays propagated from other trains. Since delays are modelled as 
distributions, the accumulated delay is calculated as a convolution of delay distributions. This 
delay is reduced by the amount of running or stopping time reserves present, which 
corresponds to a left shift of the delay distribution. 
     A single calculation of a scenario produces the results, which can be used to evaluate a 
timetable or to compare variants of timetables or infrastructure changes based on network-
wide operational key figures. All resulting delays are modelled as distributions which enables  
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Figure 4:  The application OnTime and some views on results. 

calculating (almost) any desired key figure. As an example, since OnTime calculates the 
resulting probability distribution for every train and station, it is possible to determine the 
frequency of arrivals and departures within the chosen punctuality threshold, e.g. the 5 minute 
punctuality is given by the integral of the probability density function up to the 5 minute 
threshold. 

3.2  Methodical advantages 

Using distributions to model delays in a simulation has significant advantages over a Monte 
Carlo approach that uses individual disturbances in a (series of) deterministic simulations. 

3.2.1  Real world key figures  
Traditional tools of railway operation science do not use the same key figures that are 
common for describing railway operation quality. As Bär et al. [9] pointed out, analytical 
approaches and simulations do not match in their respective statements and even simulations 
often do not match empirical analysis of operation. This is mostly because simulations are 
restricted to parts of a network, so key figures are limited in scope or of a derivational nature. 
The ability of OnTime to simulate whole networks and to reproduce the operational quality 
of an average day or a timetable period makes it possible to forecast a future timetable’s 
punctuality. Effects of timetable or infrastructure changes can be assessed consistently for 
the whole network to compare and prioritise measures. 

3.2.2  Calibration  
The verification and calibration of a simulation model is a long and laborious process. Using 
a Monte Carlo approach with repeated simulation runs to mimic all disturbance situations 
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makes this task almost impossible. The fact that disturbances can (and do) occur everywhere 
in the network and cause a wide range of initial delays (see Section 2) should be reproduced 
by the tool, which is possible with OnTime. For example, SBB used primary delays extracted 
as described by Labermeier [4] to verify the OnTime model and as a starting point for a finer 
calibration.  

3.2.3  Combination with demand models to evaluate passenger punctuality  
Evaluating the operational quality of a timetable from a passenger’s perspective is often quite 
demanding: a train delay of a few minutes can be just a nuisance, but if it results in missing 
a connection, the passenger’s delay could become an hour or more. For example, Landex 
[10] described ways to assess passenger delays. Some of the previous problems are resolved 
when using the stochastic simulation in OnTime as all delays and the probabilities of catching 
or missing connections are available for the whole network as distributions. This suits the 
needs of demand modelling tools. In 2016 a project together with SBB showed the feasibility 
of the combination of OnTime and SBB’s demand modelling tool SIMBA [11]. The 
combination allows for a holistic evaluation of timetable and infrastructural measures [12]. 

4  MODELLING DISTRIBUTIONS 

4.1  Exponential  

Exponential distributions are widely used for modelling delays since on the one hand they fit 
measured delays quite well [6], [13] and on the other hand their convolution is very easy to 
calculate, which makes calculating delay propagation fast. However, in order to better fit 
measured delays, Büker [2] introduced delay distributions with segment-wise exponential 
distributions, with cumulative distribution functions of the following form: 
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     Thus, the probability of a delay ≤ t is a constant cn reduced by an exponentially decreasing 
part for every segment of the distribution. 
     In theory, delays can be fit arbitrarily accurately using this type of delay distributions by 
adding more segments. However, though the main mathematical advantage of exponential 
distributions – namely that the convolution is again an exponential distribution – is retained, 
the number of segments grows exponentially. This leads to severe limitations in practical 
applications due to running times becoming too large. Therefore, Büker [2] developed 
methods for simplifying these distributions by reducing the number of segments. This method 
is implemented in OnTime. Initially, delay distributions have up to three exponential 
segments. During calculation the number of segments will quickly grow, thus, when a 
distribution becomes too large a simplification will be triggered, which reduces the number 
of segments again. 
     The approach has worked fine in OnTime and is still widely used, yet it has two 
drawbacks: 
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1. Obviously, a simplification of a delay distribution does not fit the original exactly leading 
to small inaccuracies, which do not matter when a whole railway network is simulated. 
However, they can become an issue if two simulation runs of the same network with 
slightly changed parameters are compared. In this case, it is not always easy to 
distinguish whether the differences in the results are real, in the sense that they are caused 
due to different parameters, or just a result of simplifications taking place at different 
stages of the simulation. An example is shown in Fig. 8. 

2. The simplification step is numerically very sensitive, which makes using a higher 
floating-point precision than double necessary. Unfortunately, this increases the running 
time for a simulation considerably. 

     With increased requirements on the accuracy of the simulation and increased 
computational potential changes were made to alleviate these issues. Yet, as raising the 
number of segments and increasing the floating-point precision did not solve the problems 
satisfactorily, a new approach became necessary.  

4.2  Discrete modelling 

In order to tackle the two drawbacks to the exponential distribution approach, we have 
implemented delay distributions modelled as discrete distributions (Fig. 5) with a fixed step 
size s, a minimum delay dmin (which can be negative, i.e., an earliness), and a maximum delay 
dmax. Delay distributions modelled this way fulfil the necessary requirement of their 
convolution again being a discrete distribution. Additionally, the step size is not changed by 
convolution. And though the values of the minimum and maximum delays would decrease 
or increase respectively, we avoid this by cutting of delays with a probability lower than a 
chosen minimum probability, e.g., one in a million. This leads to the main advantage of the 
discrete distribution modelling compared to segment-wise exponential distributions: no 
simplification steps are needed. Consequently, a floating-point accuracy of double proved to 
be sufficient for the implementation in OnTime. 
 

 

Figure 5:   Delay distribution as a segment-wise exponential distribution compared to a 
discrete distribution. The exponential segments are indicated by the different 
shades of orange. 

     A further advantage of modelling delays with discrete distributions is that practically any 
form can be fitted very accurately further increasing the accuracy of the delay prognosis. As 
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an example, delay distributions often contain discontinuities due to dispatching decisions, 
which can be better fitted with discrete distributions. 

4.3  Experimental results 

Since the step size s plays a crucial role both for running time and accuracy, we investigated 
the delay prognosis for test data of a large national network. All calculations were conducted 
on a standard laptop with an Intel i7 hexa-core CPU and 32 GB RAM.  
     Fig. 6 shows the calculation time and derived punctuality measures for several step sizes. 
As expected, the calculation time decreases quadratically with the step size s as the 
calculation time increases quadratically for the main driver of running time – calculating 
convolutions – in the number of supporting points of the discrete distributions. However, 
after a step size of 9 s no more improvement in running time can be realised since pre- and 
postprocessing steps independent of the step size s become dominant. On the other hand, the 
chosen punctuality measures are very robust with respect to changes in the step size. The 
results are nearly independent of s up to 6 s when they start to rise slightly, i.e., the prognosis 
starts to show higher punctuality values. 
 

 

Figure 6:  Increment versus punctuality. 

     Fig. 7 shows the resulting delay measures for several values of s. Again, the measured 
values do not change much up to a step size of 6 s, where measured values start to decrease 
a bit. As a result of these tests, OnTime now uses a step size of 3 s for the discrete 
distributions, which we feel results in a good balance between running time and accuracy. 
     Table 1 compares the calculation time for the same test scenario using either segment-
wise exponential distributions or discrete distributions. The calculation time needed using 
discrete distributions is down to about a quarter. 
     Finally, Fig. 8 shows the unwanted changes in punctuality values due to the first drawback 
mentioned in Section 4.1. The figure shows the difference between two simulation runs, 
where the input is equal except for a small timetable improvement in the centre of the 
network. The result of the improvement is visualised by the green areas. However, on the 
left-hand side where the simulations were calculated using segment-wise exponential  
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Figure 7:  Increment versus delay. 

Table 1:  Calculation time. 

Exemplary network 
Calculation time (min) 

Exponential Discrete 
Germany 220’ 60’ 
Switzerland 125’ 30’ 

 

 

Figure 8:   Comparison of difference in punctuality for two simulation runs that are equal 
up to a local timetable improvement. Green areas show improvements and red 
areas declines in operational quality. 

distributions, some negative effects on operational quality visualised by red areas appear. 
This change is not caused by the difference of the two inputs of the simulations but are caused 
by simplification steps happening at different stages of the calculation. As shown on the right-
hand side, no such effects occur if the simulation is calculated using discrete distributions. 
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5  CONCLUSIONS 
OnTime is a simulation tool for calculating a delay prognosis for a timetable. While most 
tools apply a Monte Carlo simulation approach, OnTime calculates resulting delay 
distributions analytically, thus reducing calculation time considerably and enabling 
simulations of much larger railway networks. In addition to the previous delay modelling 
with exponential distributions, we have implemented calculations using discrete 
distributions. Comparisons between the two approaches have shown that on the one hand 
calculation time is reduced fourfold and on the other hand accuracy for small changes in the 
input data is much improved. 
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