
DEVELOPING THE TRAM CONTROL SYSTEM BASED ON
SIMULINK/STATEFLOW AND B METHOD

CHENG PENG1,2, WANG KEMING1,2, HOU XILI3, LIU NING2,4 & WANG ZHENG1,2
1School of Information Science and Technology, Southwest Jiaotong University, China

2National-Local Joint Engineering Laboratory of System Credibility Automatic Verification,
Southwest Jiaotong University, China

3TongHao GBA (Guangzhou) Smart Control Co., Ltd., China
4Graduate School of Tangshan, Southwest Jiaotong University, China

ABSTRACT
The huge gap between the requirements and the system model is an obstacle to the application of formal
methods in industry. To reduce this gap, as well as to enhance the consistency and completeness before
implementation, we proposed an approach integrating Simulink/Stateflow and Atelier B for developing
the tram control system. The Simulink/Stateflow was used to quickly model the requirements for the
system. Moreover, we analysed and debugged the logic of the system with the fast-iterative simulation
of Simulink/Stateflow. Afterwards, we outlined the analysis in which the B architecture is chosen and
manually built the B model according the process flows of the Stateflow model, to further explore
through proof of safety invariants. Finally, we introduced the approach by developing the point
controlling module of our projects. In this paper, following the approach we presented, not only can the
consistency between the requirements and formal specification be improved, but the safety of system
model is strengthened.
Keywords: Simulink/Stateflow, B method, formal verification, simulation, safety-critical, tram
control system.

1 INTRODUCTION
In recent years, the formal method, a technology with rigorous mathematics foundation, has
been successfully applied to the development of the railway safety-critical system. For
example, ClearSy [1], a French Company, developed the driverless system of Paris metro
line 14 using Atelier B [2], a B method-based IDE tool [3].
 However, there are remaining challenges on the application of the B method. The
challenges consist of correctness of specifications, correctness of implementation and
correctness of proofs, etc. [4]. To revise the incorrect specifications, which lead to
the inconsistency between the informal requirement specifications and formal modelling, the
UML [5] is used to explore the potential designs before modelling. It can help the coder to
understand the design of the system, but is unable to validate the correctness of the functional
flow analysis of the requirements. The Matlab Simulink/Stateflow [6] provides the graphical
diagrams, which not only can quickly model the behaviors of the control system, but also
enable the developer to analyze and debug the logic flow of the model. Nevertheless,
the correctness of the model cannot be guaranteed by simulation testing alone. Although the
Simulink Design Verifier [7] can use Bounded Model Checking [8] algorithm to generate
test cases to improve test coverage, it lacks the sufficient support for formal verification (e.g.
The state space explosion of the model). Therefore, we propose an approach which combines
the advantages of both Simulink/Stateflow and B method.
 We apply the integrated approach to the developing of the tram control system (TCS) of
Guangzhou Huangpu Line 1 in China. As far as we know, this is the first application of B
method on the tram control system in China. The approach boosts our confidence in design
consistency and completeness before implementation.

Computers in Railways XVII 315

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

doi:10.2495/CR200291

 The rest of this paper is organized as follows. The developing map of our project presented
in this paper follows the discussion of Section 1. By introducing a case, point controlling
module (PCM) of TCS, the processes of Stateflow modelling and translating that are
described in Section 1 are developed into a concrete activity in Section 2. In Section 3, the
simulation steps are listed to explain how to do iterative simulating; the example of
formal verification is given to illustrate the benefits between simulation testing and formal
technologies. Finally, we discuss the related work and conclude our work.

2 THE PROCESSES OF OUR APPROACH
Developing the safety-critical systems in the railway domain usually follows the V model.
Here we define an enhanced V model in our approach, as depicted in Fig. 1.

System
Requirements

System
Architecture

Detailed
Design

Code

Unit
Testing

System
Testing

User
Acceptance

Testing

Manual transformation

Simulation

Figure 1: The developing map.

 In Fig. 1, the approach consists of two processes, which are described below:

1. Modelling and validation based on Simulink/Stateflow: the flow charts and state
machines of Stateflow are used to model the system functions, which are derived
from the requirements. After the Stateflow model was established, the correctness
of its function flow is validated through fast iterative simulation, which is a cyclic
control represented by the dashed line in Fig. 1.

2. Modelling and verification based on Atelier B: we manually build a B model
following the architecture and logic flows of Stateflow model, which will be proved
in the proof environments of Atelier B.

316 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

3 MODELLING AND TRANSLATING THE PCM
In this section, along with the steps of this integration approach, the PCM and its development
will be illustrated.

3.1 The brief introduction of PCM and its simulink/stateflow

The TCS includes many modules such as PCM, Route, Manual, etc., which are required to
achieve safety integrity level 4 (SIL4) and comply with the European standard for railway
software, CENELEC EN50128 [9]. Fig. 2 shows the connections between PCM and other
modules, which cooperate with the data-flows to send and receive the commands.
 Simulink contains a set of blocks, sub-systems, and wires. Stateflow can be encapsulated
as blocks or sub-systems, where Stateflow can be modelled by a hierarchical structure.
Fig. 3 is presented to offer a real hierarchy snippet of our Stateflow model and it is also an
extension of the POL diagram. The wires connect among the different blocks or sub-systems
to cooperate with the data-flows. To provide the actual connections, Fig. 4 draws a Simulink
project on the basis of the Fig. 2.

Route or
Manual
module

PCM
Point

Operation
Equipment

The commands to the
point equipment

The current state of the
point equipment

The current
state of the PCM

The commands
to the PCM

TCS

Figure 2: The framework of the PCM.

unlock

manual_lock route_lock

manual_route_lock

[pointCmd=pointCmd_manualLock]

[pointCmd=pointCmd_Release] [sectionPointCmd=sectionPointCmd_lock]

[sectionPointCmd=sectionPointCmd_release]

[sectionPointCmd=sectionPointCmd_lock]

[sectionPointCmd=sectionPointCmd_release]

[pointCmd=pointCmd_manualLock]

[pointCmd=pointCmd_Release]

en:pointRouteManualLockStatus=
pointRouteManualLockStatus_lock;
pointActuator=0;

en:pointRouteRouteLockStatus=
pointRouteRouteLockStatus_lock;
pointActuator=0;

en:pointRouteManualLockStatus=
pointRouteManualLockStatus_lock;
pointRouteRouteLockStatus=

 pointRouteRouteLockStatus_lock;
pointActuator=0;

lock_state

1

2

2 2

1

1 1

2

Figure 3: The picture depicts the unlock state, it has a sub-diagram as well as the extension
of POL.

Computers in Railways XVII 317

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

pointCmd

powerOnUnlockSuc

routePointCmd

sectionPointCmd

accquirePoint

pointTIASDisp

pointRouteDisp

pointActuator

pointTIASStatus

pointRouteManualLockStatus

pointRouteRouteLockStatus

pointRouteBlockStatus

pointRouteMoveRlt

pcs_point

routeCmd

signalRouteDisp

signalRouteStatus

sectionRouteStatus

pcs_route

powerOnUnlockSuc

pointRouteDisp

pointRouteManualLockStatus

pointRouteRouteLockStatus

pointRouteMoveRlt

signalRouteLightDisp

signalRouteForwardCmd

sectionRouteDisp

routeSectionCmd

routePointCmd

routeSignalCmd

routeObcuRouteState

routeTIASFB

pointRouteBlockStatus

Figure 4: The connections between Route and PCM.

 Fig. 2 ignores the command PowerOnUnlockSuc, which is the input of pcs_point of
Fig. 5. In this paper, pcs_point is approximately equivalent to PCM.

3.2 Modelling Stateflow of PCM

 In Section 1, the first step of our approach is modelling and validation based on
Simulink/Stateflow. As a correspondence to the first step, modelling PCM is dedicated in
this part and the validation of PCM is discussed in Section 3.
 Stateflow acts as a bridge between the requirements and system design. We use Stateflow
to create a multiple-level hierarchical model to represent the system functions that is
decomposed by the domain experts. The different levels indicate the different development
stages of the model, which are portrayed as a development views, from abstract to concrete.
 The Stateflow diagram of each level can be an AND diagram, for which states are
distributed in parallel and all of them are actually executed in sequential order according to
their priority once AND is triggered; or an OR diagram, where only one of the states is active
when OR is activated. Fig. 5 gives the Stateflow diagram of the pcs_point, containing the
PowerOnlock module and PCM module. The Stateflow of PCM is an AND diagram, which
is composed of three parallel states: point operating and locking (POL), point blocking (PB),
and the display of the train integrated automated system (TIAS), respectively. Because of
hierarchy, POL is modelled as a sub-diagram and it is also an OR diagram, comprising four
states, unlock, manual_lock, route_lock, and manual_route_lock respectively.
 After the Stateflow model was established, the correctness of its functional flow was
validated in the simulation environments. In Fig. 4, the data-flows that are connected
between the PCM and Route constitutes closed loop control. The loop can be iteratively
simulated to debug and analyze the correctness of function of the model, which are discussed
in Section 3.

318 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

unlock

manual_lock route_lock

manual_route_lock

POL

Unblocked

blocked

PB

Com
TOTIAS

TIAS

PCM

PowerOnlock

pcs_point

[PowerOnUnlockSuc]

Figure 5: The overview of Stateflow of pcs_point.

3.3 Translating Stateflow to B

Owing to the correctness of the Stateflow model cannot be guaranteed by simulation alone,
formal technologies are introduced into the development process to deal with this issue. In
Section 1, the formal activity is the second step of our approach, which is divided into the
modelling and verification based on Atelier B. Modelling PCM is also the translating of
PCM. As a correspondence to the second step, translating is analyzed in this part and the
verification is discussed in Section 3.
 In terms of translating of PCM, two aspects should be inherited by B modules, which
are the structure of the hierarchical diagram of Stateflow model and its detailed
design respectively.

3.3.1 Translating the structure of Stateflow to B module
The first aspect concerns the inheritance of the architecture of Stateflow. Fig. 6 provides the
mathematical relation which represents a mapping, from Stateflow diagram to B modules.
The mapping is defined as a total surjection:

{ , ,..., } { , ,..., }.Transition D1 D2 Dn B1 B2 Bn  

 In Fig. 6, the set  , , , D1 D2 Dn denotes all diagrams of this module and the set

 , , , B1 B2 Bn denotes the all B modules, where a B module can be made up of three

components – abstract machine specification, refinement, and implementation [1].

Stateflow Diagrams (D1, D2, …, Dn) B modules (B1, B2, …, Bn)

Total Surjection

Parent diagram

Sub-diagram

{D1, D2, …, Dn} -->>{B1, B2, …, Dn}

Specification

Refines

Refines

Implementation

...Default transition

Figure 6: The mathematical relation between Stateflow and B.

Computers in Railways XVII 319

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

 Since these B modules can build a B project through different architectures, hand in hand
with the decision on how to translate the Stateflow architecture goes the choice of B
architecture to develop a B project. The brief analyses are outlined for choosing
the translations.
 Translation analysis of B development: as far as the B architecture of PCM is concerned,
we believe there are three mechanisms of translation (In fact, there are only two for
this paper).
 (1) Translating the structure of Stateflow to system modelling option.
 System modelling has always been a development option when it comes to using B
method for system level. The mapping should be defined as a concrete total surjection:

Re _ { , ,..., } { }.finement structure D1 D2 Dn B1  

 On the basis of the definition, all diagrams of PCM are coupled into a B module. It actually
adopts a coupling translation paradigm. To construct final software systems, one issue should
be taken which is that the specification of each B module needs comprise the inputs and
outputs of all diagrams of a Stateflow module. However, this mechanism can demonstrate
system but does not generate codes for system. To this end, B method provides software
development option for code generation. Software development mainly adopts INCLUDES
and IMPORTS mechanisms to develop system [1].
 As a preliminary statement below, the mapping of (2) and (3) both are defined as a
bijection in this module:

_ { , ,..., } { , ,..., }.INCLUDES IMPORTS D1 D2 Dn B1 B2 Bn   

 (2) Translating the structure of Stateflow to INCLUDES mechanism (software develops).
INCLUDES mechanism is used to bring together the components, where the information of
the included component can be obtained by the inclusion component. It is much fitter for
developing specification text. According to the bijection, each diagram of PCM corresponds
to a B module that includes a specification. INCLUDES mechanism is first used to link
among the specifications, then they are implemented separately.
 (3) Translating the structure of Stateflow to IMPORTS mechanism (software develops).
 IMPORTS mechanism links between an implementation and a specification. The
implementation can use specification’s data to implement its own data and operation. It is
more suitable for constructing software systems. Based on the bijection, these specifications
are first independently developed into the implementations, where each implementation uses
IMPORTS mechanism to link corresponding specification.
 Result for developing PCM: In terms of Stateflow of PCM, the specifications have been
divided into different hierarchical diagrams. Intuitively, such a Stateflow specification offers
exceptional advantages for software development. From our opinion, for choosing (2) or (3),
the main criteria are how the relations between different hierarchical diagram in PCM are
linked. By the composition of the specifications, INCLUDES mechanism can build a
refinement structure of PCM. For instance, if POL includes pcs_point, the guard conditions
of each transition of POL should include the condition PowerOnUnlockSuc in pcs_point.
IMPORTS mechanism divide the guard conditions of the refinement structure into different
implementations through decomposing an implementation into a number of specifications.
For example, the PowerOnUnlockSuc is not included POL in case of pcs_point imports POL,
but the PowerOnUnlockSuc is still the guard condition of the transitions of POL as the
substitution of the implementation of pcs_point is decomposed into the operation of
the specification of POL. Consequently, both (2) and (3) can be used to develop PCM.

320 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

poinElementModel
poinElementModel_i

lock_state block_state comToTIAS

lock_state_i block_state_i comToTIAS_i

import

import

Pcs_point_i
Pcs_point

unlock
unlock_i

import

import

Figure 7: Snippets of the B architecture of PCM.

 Fig. 7 shows that (3) is used to develop the architecture of PCM in this paper.
 In Fig. 7, the four abstract machines – pointElementModel, lock_state, block_state, and
comToTIAS respectively denote PCM, POL, PB, and TIAS. The unlock abstract machine
denotes the state unlock of POL, which has a sub-diagram.

3.3.2 Translating the contents of Stateflow to B module
Once the architecture is determined, another aspect will concern how the contents of each
specification and its refinement and implementation (B1, B2, …) should be developed. The
main elements of a Stateflow diagram include a finite set of states, transitions, and variables.
 States: except for having the hierarchy like unlock state in POL, a state may be involved
with the three optional types of actions: An entry action executed when the state is activated;
A during action executed when no transition is satisfiable; An exit action executed
immediately before the source state is marked inactive.
 Transitions: to select an active state of the OR diagram on condition that the OR diagram
was activated, default transitions with no source states or source junctions are allowed. For
instance, the unlock state becomes active as the POL diagram was triggered. A transition
might consist of several transitions joined by junctions such as in TIAS diagram. A
transition label is a line with an arrowed, from source state to target state; It can contain an
event, a condition, a condition action, a transition action, which are formed as follows:

_ []{ _ } / _transition label event condition condition action transition action [17].

 The valid transition label can be an event only; or a condition only; or an event and a
condition; or NOT specified; etc. The condition_action will be executed when the event is
triggered and the condition becomes true. The transition_action is executed after the relevant
transitions were determined to be valid. For instance, the transition_action is triggered after
the exit action of source state was exectuted.
 Variables: the variables may be a set of input data-flows, output data-flows, or local, and
them exist in the condition, action, etc.
 We translate the main elements of a Stateflow diagram into the OPERATIONS CLAUSE
and the INITIALISATION CLAUSE of an implementation of a B module. The relation
between them and ELSIF definition are depicted in Fig. 8. Apart from the ELSIF structure,
other substitution structures are allowed as long as the substitution can be implemented.

Computers in Railways XVII 321

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

Following the previous definition that each diagram corresponds a B module, the translation
items are presented as shown below:

1. The States in each diagram are defined as a variable to denote the states such as the
variable pointLockstate in Fig. 9;

2. The Variables of each diagram are defined as the input and output parameters (e.g.
the pointCmd in Fig. 9) of OPERATIONS. The parameters will be replaced by the
temporary variables to verify the model with INVARIANT CLAUSE;

3. INITIALISATION is coded by translating the default transitions of Stateflow.

4. The predicates of OPERATIONS may be expressed by the source state itself (e.g.
the variable pointLockState in Fig. 10) and event or condition in the transition label;

5. The substitution of OPERATION can be condition_action; or transition_action; or
relevant entry action, during action, and exit action; or a target state itself. Besides
the substitutions above, the OPERATIONS of the specifications to be imported by
the implementation are also substituted.

 Based on the translation, the snippets of code of the PCM are given to explain the above
discussion. The snippets of code of lock_state as shown in Fig. 9, where the sets like
pointCmdSets are defined in the Context file, in which the data-flows such as pointCmd
are derived.
 The snippets of code of lock_state_i as shown in Fig. 10, where the transitions and states
in POL diagram are inherited. In Fig. 10, the operation unlockStart comes from the unlock
machine. There is no refinement machine as an interim from lock_state to lock_state_i.

Source state Target state
INITIALISATION OPERATION

INITIALISATION : BEGIN S END;
OPERATION: IF P THEN S ELEIF Q THEN T ELSE U END;
Where P and Q are predicate and S, T , and U are substitution

Figure 8: The relation and ESLIF definition in the implementation of B module.

Figure 9: Snippets of the B code of lock_state.

322 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

Figure 10: Snippets of the B code of lock_state_i.

 Section summaries: Stateflow can quickly generate the logic model of the specification.
Moreover, a well-defined architecture of the software system and detailed design are
established by Stateflow, which helps to better understand the behaviors of the system during
the formal modeling activity.

4 SIMULATION AND FORMAL VERIFICATION

4.1 Simulation

In this part, by integrating PCM and the Test Sequence within the Test Harness, the
test-specific simulation environments are built as shown in Fig. 11.

pointCmd

routePointCmd

sectionPointCmd

accquirePoint

pointTIASDisp

pointRouteDisp

pointActuator

pointTIASStatus

pointRouteManualLockStatus

pointRouteRouteLockStatus

pointRouteBlockStatus

pointRouteMoveRlt

powerOnUnlockSuc1
2
3√

Test Sequence Signal spec.
and routing

Signal spec.
and routing

pcs_point

[pointTIASDisp]

[pointRouteDisp]

[pointActuator]

[pointTIASStatus]

[pointRouteManualLockStatus]

[pointRouteRouteLockStatus]

[pointRouteBlockStatus]

[pointRouteMoveRlt]

[pointTIASDisp]

[pointRouteDisp]

[pointActuator]

[pointTIASStatus]

[pointRouteManualLockStatus]

[pointRouteRouteLockStatus]

[pointRouteBlockStatus]

[pointRouteMoveRlt]

Figure 11: The simulating environment of PCM.

 In Fig. 11, the outputs of PCM is linked with the inputs of the Test Sequence. A Test
Sequence contains test steps, where a test step consists of actions and transitions. Action
executes at the starting of the step. Transition defines when the step stops executing. The
entire simulation progresses observe the logical transformations within PCM by periodically
performing the steps defined in the Test Sequence. A step comprises the following
three processes:

Computers in Railways XVII 323

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

1. The first is to assign values to the inputs of PCM through executing the outputs of
Test Sequence; The outputs are the actions of a step, which can be edited in the Test
Sequence Editor.

2. After the outputs of PCM was returned to the Test Sequence, it can be assessed
whether to comply with the expectation;

3. The current transition condition is then validated. If it is satisfiable, it jumps to the
next step to execute. Otherwise, it stays at the current step.

 When the simulation model is running, the results are sent to the Test Sequence. Based
on the results, the model is analyzed to validate whether it meets the requirements.
 One concern for our work is how does the result of simulation conducive to assist formal
proving. Indeed, the simulation information only are used to correct the Stateflow model
while not work on proving. However, based on the checking of the simulation results, the
accuracy of the formal modelling can be improved.

4.2 Formal verification

Verification with invariants: after the B model was built, the hidden safe defects can be
further explored by the obligation proving of the safety invariants.
 Note that there is no gluing invariant in lock_state_i since the variables imported from the
other abstract machines are not refined relation for the variables in lock_state. In addition,
the variable name is consistent from abstract machine to its implementation.
 Example: we assume that the safety requirement is whether the reachability of the state
manual_route_lock in Fig. 3 can satisfy the requirement, then the invariant is:

 = _ _ _

_ _

_ _

pointLockState pointLockState manual route lock

verify section sectionPointCmd lock

verify manual pointCmd manualLock


 


 Notice also that the two temporary variables verify_section and verify_manual separately
represent the two input commands sectionPointCmd and pointCmd, as the two input
commands are parameter that INVARIANT CLAUSE is unable to identify. In Fig. 3, the
three variables pointRouteManualLockStatus, pointRouteRouteLockStatus, and
pointActuator respectively become equal to pointRouteManualLockStatus_lock,
pointRouteRouteLockStatus_lock, and 0 when the entry actions of the state
manual_route_lock are executed. In the invariant, the value of the variable pointLockState is
to represent the values of two variables pointRouteManualLockStatus_lock and
pointRouteRouteLockStatus_lock.
 In the proof window, the deduction result of the invariant does not involve violations
which indicates that the value of the variable pointLockState becomes equal to the state
pointLockState_manual_route_lock when the sectionPointCmd and pointCmd hold true.
 Section analyses – Benefits analysis between simulation and formal verification:
model-based simulation technologies can validate the functional flow correctness of the
model from requirements by editing test cases that are executed logically. Thus, we conclude
that there is an improvement for the correctness of requirement specifications under the above
simulation testing. Nevertheless, the effectiveness of them cannot satisfy the criterions of
high-test coverage and completeness specifications in safety-critical applications. For this,
formal technologies are utilized to fill the gap and complement verification mechanism.

324 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

5 RELATED WORK
The huge gap between the informal requirements and formal specifications has been an issue
of interest in the safety-critical domains over past decades. It promotes quite a few works to
reduce this gap. For example, two approaches are presented to integrate the structured
analysis and VDM in Fraser et al. [8], and Object Constraint Language specifications from
UML cases are used as a guidance for customer-side to develop formal specifications in
Giese and Heldal [9], and so on. For B method, using UML has been a de-facto standard for
modelling software systems in informal stage. Many researches have been done on the
transition from the UML to B language such as Laleau and Mammer [10], [14]. In Fotso et
al. [12], SysML/KAOS, a requirement engineering method of extending SysML UML profile,
is used to derive B system specifications; Being apart from extracting the elements of the
model, it translates the ontologies, refinement structure etc., of the model into B system
specifications to build more links between models.
 Besides the concern of bridging the gap, two issues have been widely discussed at the
intersection of the software development community and formal method. The first one is
related to the benefits of software ecosystems. Historically, software engineering has been
also seeking a high level of accuracy at earlier stages of development. According to the
statistics [13], about one-third of the errors in the product are buried in the requirement stages,
and the earlier they are corrected, the lower the cost. In our work, by modelling the
requirements with Stateflow and using the simulation in Simulink environments to correct
the errors of the informal model, not only is the gap filled but also the accuracy of formal
modelling activities has an improvement.
 Another issue attaches the industry development challenge of formal methods, and
different formal technologies have their own challenges. In this paper, we focused on the
challenge of introducing the B method into the industry. In Lecomte [3], although the B
method are successfully used in the railway domain, the main challenge is poor spreading in
the safety-critical industrial community; One main reason is that it is too difficult to modify
the developing approaches which has been established over many years in the aeronautics,
energy, etc. [14]. As a possible future direction, the approach we presented would be
interesting to extend formal methods to more safety-critical domains by combining the
advantages of Simulink project and B method.

6 CONCLUSION
Industrial developing including formal method exist a huge gap between requirements and
formal specifications. In this paper, aimed at this gap, we proposed an approach integrating
the advantages of Simulink/Stateflow and B method on the developing of the safety-critical
system. The process of this approach was introduced in an improved V model, with its
function being illustrated by developing PCM of TCS. After the functions of PCM from
requirements were modelled by Stateflow, two aspects are concerned towards the
transformation from Stateflow to B: (1) the analyzes are outlined to choose suitable
mechanisms for the structure transformation; and (2) the elements of Stateflow diagram are
described to explain the corresponding translation relation. Afterwards, orienting the higher
industry standard, we clarified the advantages of formal verification over simulation.
 While bridging the gap, our approach contributes to increasing the benefits of software
development. According to our developing experiences, the approach we proposed not only
can check the correctness of the requirements, but also significantly improves the accuracy
of the formal modeling processes which consequently enhance safety of the system.
 Model-based engineering involving formal method still are not common. As a spread, the
integration may enable more industrial applications to apply formal method. The possible

Computers in Railways XVII 325

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

future work is to translate Stateflow model automatically into the B model, so as to establish
a highly practical approach based formal method for the development of the industrial
control systems.

ACKNOWLEDGEMENT
We would like to thank the National Natural Science Foundation of China (No.
71502146, 61673320).

REFERENCES
[1] Clearsy. www.clearsy.com/en. Accessed on: 6 Apr. 2020.
[2] Lecomte, T., Deharbe, D., Prun, E. & Mottin, E., Applying a formal method in

industry: a 25-year trajectory. SBMF 2017, LNCS, eds. S. Cavalheiro & J. Fiadeiro,
Springer: Cham, pp. 70–87, 2017. Clearsy. www.clearsy.com/en. Accessed on: 6 Apr.
2020.

[3] Abrial, J.R., The Book title: Assigning Programs to Meanings, Cambridge University
Press: Cambridge, 1996.

[4] Batra, M., Formal methods: Benefits, challenges and future direction. Journal of
Global Research in Computer Science, 4(5), pp. 21–25, 2013.

[5] Rational Software Corporation: OMG Unified Modeling Language Specification –
version 1.4., Sep. 2001.

[6] Mathworks Automotive Advisory Board (MAAB): Control Algorithm Modeling
Guidelines Using Matlab, Simulink and Stateflow, Version 2.0, 2007.

[7] The Mathworks, Simulink Design Verifier. www.mathworks.com/products/simulink-
design-verifier.html. Assessed on: 6 Apr. 2020.

[8] Clarke, E. et al., Bounded model checking using satisfiability solving. Formal Methods
in System Design, 19(1), pp. 7–34, 2001.

[9] CENELEC – EN 50128, Railway applications-communication, signaling and
processing systems-software for railway control and protection systems, 2011.

[10] The Mathworks, Help Center, Transitions. www.mathworks.com/help/stateflow/
ug/transitions.html. Assessed on: 6 Apr. 2020.

[11] Fraser, M.D., Kumar, K. & Vaishnavi, V.K., Informal and formal requirements
specification languages: bridging the gap. IEEE transactions on Software Engineering,
17(5), pp. 454–466, 1991.

[12] Giese, M. & Heldal, R., From informal to formal specifications in UML. International
Conference on the Unified Modeling Language, pp. 197–211, 2004.

[13] Laleau, R. & Mammar, A., An overview of a method and its support tool for generating
B specifications from UML notations, ICS, pp. 269–272, 2000.

[14] Snook, C. & Bulter, M., UML-B: formal modeling and design aided by UML. ACM
Transactions on Software Engineering and Methodolgy, 15(1), pp. 92–122, 2006.

[15] Fotso, S.J.T. et al., Event-B expression and verification of translation rules between
SysML/KAOS domain models and B system specifications. International Conference
on Abstract State Machines, Alloy, B, TLA, VDM, and Z, Cham, pp. 55–70, 2018.

[16] Leffingwell, D. & Widrig, D., Managing Software Requirements: A Use Case
Approach, Addison-Wesley: New Jersey, pp. 10–40, 10–40.

[17] Abrial, J.R., On B and event-B: Principles, success and challenges. International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, Cham, pp. 31–
35, 2018.

326 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

