
FORMAL MODELING AND DATA VALIDATION OF
GENERAL RAILWAY INTERLOCKING SYSTEM

WANG KEMING1,2, WANG ZHENG1 & ZHANG CHUANDONG3
1Department of Railway Information Engineering, Southwest Jiaotong University, China

2National-Local Joint Engineering Laboratory of System Credibility Automatic Verification,
Southwest Jiaotong University, China

3Beijing HollySys Co. Ltd., China

ABSTRACT
Railway interlocking system is a typical safety-critical system, design defects of the system will pose
the great risks on the safety and affect the operation efficiency of the railway station. Formal method is
an important approach to verify the design requirement and to get the reliable logic for coding. By
analysing the requirement of railway interlocking system, the properties of specification and the events
of system’s function were obtained, and then a multilayer formal model using the Event-B language
and refinement strategy was established. The safety attributes of the system were verified and the formal
model was refined based the theorem proving. Taking a real railway station as example, the
contradictions of the axioms and the deadlock of the model were checked, as well as the correctness of
the interlocking data was validated. Finally, the correctness of the model function was tested by
simulation. We developed a formal prototype model for the general interlocking system and proposed
an approach of data validation for the real station with the interlocking table.
Keywords: railway signalling system, station interlocking, formal modelling, data validation, theorem
proving, model checking, simulation.

1 INTRODUCTION
Interlocking is important technology to guarantee efficiency and safety of the railway
station’s operation. Interlocking system is a typical safety critical system, any potential
design flaws of system are likely to lead to huge risks for the station operation. Due to the
increasing demand of system design and capacity of stations, it is a great challenge to the
development of interlocking system. The statistical data show that the most risks of system
are produced in the requirements analysis stage [1], as a result, it is very important to check
design flaw to ensure the reliability and completeness of the system in the early design stage.
 Formal method is an effective way to enhance the reliability of system, which can greatly
reduce the testing errors, significantly improve project quality and development efficiency

[2]. This method has been used in the development of the interlocking system.
 As the interlocking system is a typical data-driven system, validating the correctness and
completeness of data is critical to the safe operation of the system. The research on
interlocking data validation is still in the process of exploration, and it is necessary to study
more efficient methods of general interlock data validation.
 In this paper, we established a formal model with general function of interlocking system,
proposed an approach for interlocking data validation based the general model. In the follow
sections, the attributions of system and events were obtained by analyzing the design
specifications of the interlocking system. The properties and flows of events were described
by Event-B language on Rodin platform, UML diagrams were used to assist in establishing
the model. Through proving the proof obligations of each layer, and verifying the properties
of the system, the defects in the specification and the process of analysis were observed, and
then the formal model was improved. After successful building the initial model, the
subsequent layer models were established by refinement policy. Taking a real station yard as

Computers in Railways XVI 527

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

doi:10.2495/CR180471

example, the correctness of axioms was proved, the deadlock and the invariant violation were
checked, as well as the interlocking data were validated. Finally, the response of the model
in the environment simulated by the real case was tested, which further confirmed the
correctness of the general model and the interlocking data.

2 ANALYSIS OF PROPERTY AND EVENT FLOW
The verification of the interlocking system needs to confirm whether the system can work
properly under the interlocking management specification. Fig. 1 describes the technical
route in this paper, it showing that: in order to express the specification requirements in the
model for verification, firstly we must analysis deeply the interlocking specification, so that
obtain the requirements of the system on environmental properties, functional properties, and
safety properties, and extract the logic flows of the functional events, which will build a
foundation for modeling and verification.

2.1 Property analysis

In this paper, the property of requirements in the interlocking system has environment
properties, function properties and safety properties. The property of environment (ENV) is
used to definition the objects of modeling in the system, including the system object and its
subclasses. ENV also contains specific description for the typical feature of the object. Based
on the environment objects, the description of the whole and part of the system can be
established, and a variety of scenarios involved in system operation can be built.
 There are 3 kinds of environmental objects in the railway station system: signal, track
section and switch. Based on the interlocking management specification, taking the track
section as an example, the environment properties of track section we extracted are as
follows:
 ENV_TS1: There are 3 kinds of track sections: section with a switch, section without a
switch.
 ENV_TS2: The section with a switch contains at least one switch.
 ENV_TS3: More than one switch can exist in the section with a switch.
 ENV_TS4: The section without a switch has no switch.
 ENV_TS5: The section without a switch contains general sub-sections without a switch
and the leading/towing lines.
 Function Properties (FUN) are used to describe the basic functions of the system objects
and the execution and switching conditions of different functions. Safety properties (SAF)
are used to describe the conditions or the standards of safety during operation. Essentially
the safety properties of the system are the safety-critical functional requirements for the
system object.
 Take the signal showing and signal holding as an example to describe the establishment
of functional properties and safety properties.

Formal modelRequirement
specification

Property of
ENV, FUN, SAF

The event flow

Theorem
proving

High reliable
interlock data

Real interlock data

Simulation

High reliable
model

 Model
checking

Figure 1: The technical route.

528 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

 FUN_SIG1: The signal can normally display the right colour when the route is locked.
 FUN_SIG2: The interlocking computer should keep logically judging the conditions for
lighting during the signal-on and signal-hold period.
 SAF_SIG1: The signal is allowed to be open only when the filament of the signal is in
good condition, all the track sections are free, all switches are locked in the specified location,
and all hostile signals are not open.
 SAF_SIG2: During signal holding period, if the section is faulty occupied, the signal
should be off immediately, but do not unlock the route.
 SAF_SIG3: During signal holding period, if the switch fails to indicate, the signal
machine should be off immediately, but don’t unlock the route.
 SAF_SIG4: During signal holding period, if the signal machine is failure, the signal
should be red; if the filament of red light is also broken, the signal should not light for any
other colours, and should be in the off state.
 SAF_SIG5: When interlocking device has a systematic failure or any other fault is
detected, the permissible signal should be closed in time, and the signal should be red. After
the signal is closed for any reasons, the signal shall not light if without handling the fault.

2.2 The flow of event

The interlocking process includes route selection, route lock, signal showing, signal holding
and route unlocking. The events can describe in detail all the functions of the system in the
scenarios which is defined by the environment properties under the constraints of safety
property. So, the construction process of the event is an organic combination of various
properties. In the process, it is necessary to obtain the basic events of the various functions
in the system and their execution conditions, decompose the complex functions to get the
initialization states and the basic events as well as their execution sequences, and build the
scenarios of functions and the safety constraints.

3 FORMAL MODELING BASED ON EVENT-B METHOD
Event-B is a modelling language for describing the discrete systems, which uses first order
logic and set theory as a modelling notation [3]. An Event-B model consists of two parts:
Context file and Machine file. Context file defines the static properties of the system. Context
file consists of Carrier Set (define the abstract sets of the actual objects that make up the
system), Constant (define the fixed objects in the system) and Axiom (General principles in
systems or a priori general guidelines).
 Machine file defines the dynamic properties of the system’s operation, it consists of
Variable, Invariant (the basic principles obey by the system’s dynamic operation), Variant
and Event. Events define the state transition.
 Axioms, invariants and execution conditions of events can all be identified as theorem,
we should prove they are true using previously defined axioms, invariants or proved
theorems.

3.1 The initial model

The initial model is the starting point for modeling and verification of the system, which will
affect the simplicity of the whole model structure and the convenience of the subsequent
refinement. The core function of the interlocking system is to control the process of lock and
release route, therefore, the initial model only contains locking and releasing of the route.
The data type to be defined in the context file should include an abstract set of ROUTE; two

Computers in Railways XVI 529

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

events should be included in the machine file: lock_route and free_route, and a variable
lockedRoute need to define to represent the locked route. We use a plug-in iUML-B to
establish the UML diagrams of event flow, then generate the context file and machine file of
the models, so improve the automation of formal processes [4]. The UML diagram of the
initial model is shown in Fig. 2.

3.2 Refinement policy

In the process of building the model, a refinement policy is used to decompose the complex
system functions. When refining initial model after it is proved, the new context files and
machine files will inherit the proven theorems and invariant. The system functions will
gradually add and improve in the process of refinement and verification. The policy of
refinement ensures the correctness of lower level models, so can reduce the difficulty
of system modelling and improves the flexibility of the modification process. The process of
refinement is shown as Table 1. In the refinement processes, we can continue to generate
Event-B language model by improving the UML diagram.

Figure 2: The UML diagram in the initial model.

Table 1: The refinement processes of the model.

Steps Objects and Events

First
refinement

Bring in the object as train, build the framework of lock route, normal unlock
route after the train passed, cancel route, artificial delay free route and fault
free route.

Second
refinement

Bring in the concepts of route type, route direction, track section type, train
type and hostile route, further improve the attributes of the route, track section
and train.

Third
refinement

Bring in the object as switch, synchronize the locking and release of the switch
to the control flow of lock route and free the route.

Fourth
refinement

Improve the related events of the switch, introduce the position information of
the switch, add the events of switch turning and timing.

Fifth
refinement

Bring in the objects as signal, improve the event of cancel route and artificial
delay free route.

Sixth
refinement

Add the concepts of route process (establish the various stages of the process)
and add signal equipment failure and repair events, improve the function of
fault release.

530 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

4 VERIFICATION OF THE SYSTEM PROPERTIES

4.1 Event-B description of system properties

In a context file, we define the properties of the set or the constant as Axiom. Taking the
context file of first layer model as an example, the related properties are defined by Event-B
as follows:

1. For each route, the track section in the routeTrack must also belong to the track
section in the routeTrackNum. Its description by Event-B is:

.((r r ROUTE dom routeTrack∀ ∈ ⇒ ▷{ } dom(())))r routeTrackNum r⊆ .
2. routeTrack is not equivalent to routeTrackNum. When the route is a shunting route,

and the last section of the track belongs to the section without a switch or the
receiving-departure track, it is no need to consider the section in the interlocking
table, so routeTrack and routeTrackNum are same or only different from the last
section of the track, they are subsets relation. So:

.(((r r ROUTE card dom routeTrack∀ ∈ ⇒ ▷ { }))r = card ((dom
()))routeTrackNum r ∨ () ((()))card routeTrack card dom routeTrackNum r= -1) .

3. For each route, the number of the track section in the routeTrackNum should be a
continuous number from 1 to routeTrackCount. So:

.((()) 1.. ())r r ROUTE ran routeTrackNum r routeTrackCount r∀ ∈ ⇒ = .
4. The number of track sections in each route should be greater than or equal to 1. So:

.(((r r ROUTE card dom routeTrack∀ ∈ ⇒ ▷{ } 1)))r ≥ .

 Functional properties have also been achieved in each machine file, invariants in machine
file are used to describe the safety properties that the system must comply throughout its
operation. To keeping the establishment of safety properties, it is necessary to ensure that the
related invariants are true during the execution of first layer model, otherwise, the safety
properties cannot be completely satisfied. Taking the machine file in first layer model as an
example, the safety properties are described by Event-B as follows:

1. Any two conflicting routes cannot be established at the same time.
1, 2.(1 2 1 2r r r lockedRoute r lockedRoute r r∀ ∈ ∧ ∈ ∧ ≠ 1 2r r⇒ ∉

)conflictRoute . conflictRoute is the set of conflicting routes.
2. A track section can be only locked by one route. 1, 2· 1(2(r r r lockedRoute r∀ ∈ ∧

 2)1 lockedRoute r r∈ ∧ ≠ { } ()1dom lockedTrack r⇒ ▷ dom∩ (lockedTrack

{ })2)r = ∅▷ .
3. The section of the route established should have been locked.

{ }· ()r r lockedRoute routeTrack r lockedTrack∀ ∈ ⇒ ⊆▷ .
4. The section of the route established is not occupied by a train.

()· _ (r r lockedRoute ran train Pos∀ ∈ ⇒ { }())dom routeTrack r∩ =∅▷ .
5. The section that has been occupied by the train cannot be used to build another route.

()· _ ((r ran train Pos dom routeTrack∀ ∩ { }))r r lockedRoute≠ ∅⇒ ∉▷ .

Computers in Railways XVI 531

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

4.2 The proof obligation

Due to the huge leap from requirement to formal model, it is difficult to avoid missing some
key logical information when describing the system, also maybe there are defects in related
standard. These defects will be found when the generated proof obligations are proving. The
interactive process of proving proof obligation is very important for the developers to deeply
understand the standard, so improve system analysis for properties and formalizing model.
 After improvement of analysis of system properties, modification of the model includes
adding of event condition (guard), adding axioms or invariants [5], which will improve the
constraints of properties in the model. An example as adding the axiom to revise the model
is follow:
 When proving the proof obligation of rotate_switch_complete_2/inv1/INV in the fourth
layer model, after the predicate formula

() ()routeSwitchPos r sw dw routeSwitchPos r sw fw= ∨ =  added (RouteSwitchPos is
the correct position that the switch should be locked when the route is building, dw is normal
position, fw is reverse position), the proof obligation generates the proving target which this
predicate formula can be obtained by other existing predicate calculus, but the proof of the
target cannot be proving. After analysising the reason is:
 When defining routeSwitchPos in Context4, its data type defined as
(ROUTE SWITCH)↔ ⇸ _SWITCH POS , SWITCH is the set of the switch, the state of
the switch _ { , , }SWITCH POS dw fw null= , null stands for the switch is in four open states.
The value of routeSwitchPos ()r sw may be null , so the above target cannot be proved.
Add an axiom () {dw, }ran routeSwitchPos fw⊆ , (_) {dw, }ran r otherSwitchPos fw⊆ in
Context4, (r_otherSwitchPos is used to record the state of the other end of a double moving
switch associated with the routeSwitchPos) and then return to the proof interface again,
choose the above axiom as the assumption of this proof obligation, once again do proving
and this target has been proving, that is .
 The model generated 710 proof obligations, some proof obligations were proving with
manual interactive adjustment and model modification. The statistics are shown in Fig. 3.

Figure 3: The statistics of proof obligation in the refinement processes.

532 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

5 INTERLOCKING DATA VALIDATION

5.1 Axiom verification and data validation

The above kinds of attributes of proof obligation have been passed to ensure that the
accessibility and safety of the functions of interlocking system. But to ensure the security and
reliability of the system, we also need to: (1) Confirm the correctness of axioms. In the above
proof of obligation, it assumed that all axioms have been correctly defined and their attributes
are true. All the axioms in the model are formally built by the user after analyzing the
requirements, as the potential errors of description will cause contradictions among
the axioms; (2) Validate the data security of the interlocking in the real railway station.
Interlocking data import errors in the developing process. The data related to the correct
realization of computer interlocking function, therefore, the validation of data security is the
key of the development and application of computer interlocking.
 In order to eliminate the errors in the establishment of axioms and the mistakes in the
compilation of interlocking data as much as possible, we design the following technical
solution for data validation, as shown in Fig. 4. The approach is to create a new model that
only has the context files, and all context files are instantiated from the former model's
context files: Using the real railway station data to instantiate the constants and setting the
axioms of attributes as the theorem. All theorems will automatically generate the
corresponding proof obligation, the purpose is to prove that all the theorems can be derived
from the previously defined axioms and theorems, in order to ensure the correctness of the
axioms defined by each property.
 The example used in this paper shown in Fig. 5 is a typical three-tracks railway station,
its interlocking table (including 12 operations of receiving routes and departure routes) is as
shown in Table 2. ProB is used to verify the model, ProB is an animator, constraint solver
and model checker for the B-Method [6].

prototype Model

Interlocking Data

Theorem PRoving
+

Model checking

Function
Simulation

Real Data Model Data Validation

Figure 4: The technical solution for data validation.

X
IG

3G

2G
S

X3

XI

X21 3
24Q_1 Q_2S3

SI

S2

Figure 5: An example layout of a railway station.

Computers in Railways XVI 533

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

Table 2: The interlocking table of the example station.

 Y: Yellow. G: Green. (3): 3# Switch in Reverse. 1/3DG: 1G to 3G Section.

 In the process of proving, the proof obligation generated by Theorem routeTrackNum ∈
ROUTE → (TRACK ⤔ ℤ) in C1 file has not been proved, where ROUTE = 1…12, TRACK
= {IG, IIG, IIIG, DG_1_3,DG_2_4}, routeTrackNum has been assigned as the connection
number of each track section of route. The analysis shows that the result caused by the too
large state space, so we design a way to decompose the state space:

1. Define 4 axioms as ROUTE1 = {1,2,3}，…，ROUTE4 = {10,11,12} to replaced
ROUTE = 1…12, and define an axiom
ROUTE = ROUTE1 ROUTE2 ROUTE3 ROUTE4∪ ∪ ∪ ;

2. Assign routeTrackNum1,…, routeTrackNum4 as the track sections in ROUTE1,…,
ROUTE4 corresponding to instead of the real data of routeTrackNum, and define
the axioms: routeTrackNum = routeTrackNum1∪ routeTrackNum2∪
routeTrackNum3 routeTrackNum4∪ ;

3. Define 4 new theorems: routeTrackNum1 ∈ ROUTE1 → (TRACK ⤔ ℤ);…;
routeTrackNum4 ∈ ROUTE4 → (TRACK ⤔ ℤ), while adding a theorem to check
the independence of the domains of routeTrackNum1, ..., routeTrackNum4;

4. Put the original theorem after the above axioms and 5 theorems.

 That proving the original theorem is replaced by proving 5 smaller-scale theorems. As
shown in Fig. 6, all the proof obligation in six theorems have been approved. The above

Route
Number From To

Signal
Lock points Tracks Route locked

Name Aspect

1 X IG X Y 1, 3 1/3DG, IG 7

2 X 2G X Y 1, (3) 1/3DG, 2G 8

3 X 3G X Y (1), 3 1/3DG, 3G 9

4 S IG S Y 2, 4 2/4DG, IG 10

5 S 2G S Y (2), 4 2/4DG, 2G 11

6 S 3G S Y 2, (4) 2/4DG, 3G 12

7 IG X SI
G 1, 3 1/3DG,

Q_1 1

8 2G X S2
G 1, (3) 1/3DG,

Q_1 2

9 3G X S3
G (1), 3 1/3DG,

Q_1 3

10 IG S XI
G 2, 4 2/4DG,

Q_2 4

11 2G S X2
G (2), 4 2/4DG,

Q_2 5

12 3G S X3
G 2, (4) 2/4DG,

Q_2 6

534 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

Figure 6: The results of axiomatic contradiction checking

modification is listed in the file C1_routeTackNum which is only used for the demonstration
of the above process, in the actual process the original C1 file is needed to revise.
 Fig. 6 shows that all the theorems in the model can be verified by the real interlocking
data, it shows that the real data can satisfy all the theorems in Model 2, it means that the
actual station data can satisfy all the axioms in the former model, which proves the
correctness of axiomatic definition of the Model 1.
 In Model 2, it has been proved that the interlock data of the example railway station is
a solution under all axioms of the prototyping model. Create a new model 3, which context
files are the context files in model 2, and its machine files are the machine file in the
prototyping model. In order to ensure that the system will not be locked in one state, we need
to check whether there is deadlock in the model, so as to ensure that the running process of
the model can be smooth executed until the end of any scenario. We do the deadlock checking
and the correctness checking of model invariants in same time, the checking result is shown
in Fig. 7.

Figure 7: The model checking result.

Computers in Railways XVI 535

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

5.2 Simulation experiment

Based on model 3, the execution scenarios of the real railway station is built using the plug-
in tool BMotionWeb [7], so we can simulate the response of the model under different
variables and parameters to test the data of the interlock table. The state of signal can obtain
by the variable color_colour, the state of switch and the operating status of the train in the
railway station can be controlled by the variable switch_Pos and train_Pos.
 According to the above interlocking table, we can build routes and unlock routes
individually in the visual simulation environment, the function of the system can be normally
realized. In Fig. 8, seventh route in the interlocking table is the normal building for a
departure route from track I to track X, the departure signal SI is shown as a green, and the
switch of light colour is consistent with the interlocking table.
 The above process of theorem proving and model checking not only check the correctness
of the model, but also verify the correctness of the interlocking data, through the way of
simulation testing, the correctness of the model function and the reliability of the process
of the interlocking table making, as well as the credibility of the validation result are further
guaranteed.

6 RELATED WORK
The formal method is already applied in the research of interlocking system for many years.
For example, Literature [8] proposed the MPN (Mobile Petri Net) approach based on the
Mobile intelligent agent and Petri Net, which was used to model the interlocking system and
verify it by reachability graph. Literature [9] established the time automata model of
interlocking system using UPPAAL software and verified the safety related properties. In the
literature [10] the model of interlocking system which accommodated the sequence release
was built, using a combination of SMT (Satisfiability Modulo theory) based Bounded Model
Check and inductive reasoning, the safety properties were verify.
 The above researches use the model checking approach. Theorem proving has achieved
great development in recent years, which makes up for the defects of the model checking
method can only deal with finite state space. the Event-B method with the support platform
Rodin combines the two methods, which has been used in the research of interlocking system
[11]. The literature [12] discussed how to effectively establish the formalized model of
railway control products based on an example of interlocking system.

Figure 8: An example of the simulation testing.

536 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

 Now validating the industrial Data becomes a great challenge which has attracted the
researchers’ attention. In the literature [13], considering the static and dynamic relationship
of interlocking data, a method to transform interlocking data in engineering technical
documents into electronic data was proposed. The literature [14], described the successful
application of ProB for data validation in Communication-based Train Control (CBTC). We
present and evaluate an approach of formal modelling and data validation for railway
interlocking system based on the successful research experiences from [12], [14].

7 CONCLUSION AND FUTURE WORK
In this paper, after extracting the environmental, functional and safety properties, as well as
each event flow, we built a general interlocking system function model by multistep
refinement using the Event-B language.
 The formalized model was improved by verifying the system attributes of each layer
model. Axioms were proved based on a real station interlocking data, and through the
checking of deadlock and the correctness of the invariants, the correctness of the model is
further confirmed. We proposed a method to verify the interlocking data based on the
universal formalized interlocking model. No additional program is required, and
the validation of interlocking data can be effectively carried out by injecting interlock data
using the validated model. Based on complementary application of the model checking and
theorem proving, the response of the model in the real environment can be observed by
simulation technology, which further ensured the completeness and security of the model
function, as well as confirmed the validity of the interlocking data.
 This approach can help developers to reduce the potential design flaws of the system
design requirements in the early development stage, and to identify and correct defects in
interlocking data. Validated model can serve as a foundation for coding work, by using code
generation technology we can not only improve the degree of automation and correct coding
phase, but also reduce the cost of testing stage, which improves the overall safety and
reliability of the system.
 In the process of formal modelling and validation, knowledge is required on logic, set
theory, and strong ability of system analysis and modelling. Possible future research includes:
(1) consistency maintenance from requirement text to UML model and Event-B model; and
(2) improvement the automation degree for the interlocking data import and validation
process, etc.

Computers in Railways XVI 537

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

ACKNOWLEDGEMENT
We would like to thank the National Natural Science Foundation of China (No. 71502146,
61673320), Fundamental Research Funds for the Central Universities (No. 2682017ZT12).

REFERENCES
[1] Feiler, P. et al., Four pillars for improving the quality of safety-critical software-reliant

systems, Carnegie-Mellon University, Pittsburgh Pa, Software Engineering Institute,
2013.

[2] Larsen, P.G. et al., Formal methods: practice and experience. Acm Computing Surveys,
41(4), (19), pp. 1–36, 2009.

[3] Abrial, J.R., Modeling in Event-B: System and Software Engineering, Cambridge
University Press, 2010.

[4] Snook, C. & Butler, M., UML-B: Formal modelling and design aided by UML. ACM
Transactions on Software Engineering & Methodology, 15(1), pp. 92–122, 2006.

538 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

[5] Hoang, T.S., How to Interpret Failed Proofs in Event-B, ETH Zurich, Switzerland,
2010.

[6] Leuschel, M. & Butler, M., ProB: an automated analysis toolset for the B method.
International Journal on Software Tools for Technology Transfer, 10(2), pp. 185–203,
2008.

[7] Ladenberger, L. & Leuschel, M., BMotionWeb: A tool for rapid creation of formal
prototypes. International Conference on Software Engineering and Formal Methods,
Springer, Cham, pp. 403–417, 2016.

[8] Khan, S.A. et al., Extending petri net to reduce control strategies of railway
interlocking system. Applied Mathematical Modelling, 38(2), pp. 413–424, 2014.

[9] Khan, U. et al., On the real time modeling of interlocking system of passenger lines of
Rawalpindi Cantt Train Station. Complex Adaptive Systems Modeling, 4(1), p. 17,
2016.

[10] Vu, L.H., Haxthausen, A.E. & Peleska, J., Formal modelling and verification of
interlocking systems featuring sequential release. Science of Computer Programming,
133, pp. 91–115, 2017.

[11] Abrial, J.R. et al., Rodin: an open toolset for modelling and reasoning in Event-B.
International Journal on Software Tools for Technology Transfer, 12(6), pp. 447–466,
2010.

[12] Butler, M. et al., Formal modelling techniques for efficient development of railway
control products. International Conference on Reliability, Safety and Security of
Railway Systems, Springer, Cham, pp. 71–86, 2017.

[13] Bosschaart, M. et al., Efficient formalization of railway interlocking data in RailML.
Information Systems, 49, pp. 126–141, 2015.

[14] Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M. & Plagge, D., Improving
railway data validation with ProB. In Industrial Deployment of System Engineering
Methods, Springer: Berlin, Heidelberg. pp. 27–43, 2010.

