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Abstract

In this work, an advanced algorithm for the mechanical calculation of the catenary
system in a railway is presented. The main objective is to allow an increment in the
speed in railways, by developing an accurate mechanical calculation of the cate-
nary. Among the different types of these kind of electrical systems, the so called
stitched catenary presents a better dynamical behaviour, because it maintains a
more uniform stiffness along the span. Of course, the price to be paid consists of
a greater complexity due to the existence of two kinds of carriers, the main and
the secondary ones. Finally, the presented algorithm will be used to implement a
software tool.
Keywords: mechanical forces, stitched catenary, droppers length.

1 Introduction

In order to obtain an adequate behaviour in the pantograph/catenary system, it
is necessary the existence of adequate conditions in the line, and this requires,
among other aspects, a very precise mechanical calculation. Recent investigations
have focused on dynamical behaviour by dynamical simulations in order to allow
a better interaction of the pantograph and the catenary [9, 5]. This paper follows a
more traditional approach, focusing in the catenary, modeled, as usual, by a set of
coupled strings. However, a different approach of the model of the catenary will
be considered.

Of course, the best conditions in which the pantograph would obtain electric
energy from the line are when the contact wire is parallel to the ground, and then,
an important problem is to determine the exact length of the droppers in order to
allow the contact wire to acquire the correct shape. So, the objective of this work
is the development of a technique which allows us to implement a high precision
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Figure 1: Model of stitched catenary.

calculation algorithm, and thus to develop a software tool to design high quality
catenaries.

A first approach in that direction has been presented in [2], considering a normal
curve to model the catenary. In this paper a more advanced model as the stitched
catenary is considered, which contains four kind of wires: two carriers, the drop-
pers and the contact wire (see Figure 1).

Thus, to obtain the better conditions to supply energy to the pantograph, it is
necessary that the contact wire configures an adequate curve, that is, a parabolic
arc with a deviation in the centre to compensate the difference of stiffness between
the centre and the supports.

The paper is structured as follows.
In section 2 the characteristics of the advanced model under study is described.

In section 3 presents the algorithm for the calculation of forces, lengths and devi-
ations. After that, in section 4 some of the features of the software tool imple-
menting this algorithm is outlined. Finally, some conclusions and the future work
appear in the last section.

2 The stitched catenary model

According to Figure 1, there exists some droppers depending of the main carrier,
and other ones depending on both secondary carriers. So that, three sets of droppers
can be considered. The first one depending of the main carrier, and the second and
third ones, with similar characteristics, depending of the secondary carriers left
and right respectively.

Each set have associated a system reference and a numbering system. The main
system reference have the origin in the left support A1. This system is associated
with first set of droppers, while the second and the third sets have associated their
respective system reference, whose origin is situated in the union of the carriers
B1 and B2.

The numbering of droppers depending of the main carrier is increasing from left
to right, starting from the dropper situated in the union B1, and finishing in B2.
For droppers depending of the secondary carriers, numbering is increasing from
the first one in each case. The number of droppers and positioning will be similar
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for the two cases. Finally, the set of data used in the design of the algorithms will
be the following:

• Number of droppers depending of the main carrier na

• Position of these droppers, refereed to its system reference {xia , i = 1 . . .
na}

• Number of droppers depending of each secondary carrier nb

• Position of these droppers, refereed to its system reference {xib , i = 1 . . .
nb}

• Length of the span L (From A1 to A2)
• Distance from unions B1 to the support A1: Lb

• Height of catenary in the supports (distance from the carrier to the contact
wire): Hc1, Hc2, . . . ,

• Weight by unit of length of the carriers, pa to the main and pb to the sec-
ondary one

• Weight by unit of length of the contact wire q
• Specific weight of the material of the dropper (normally copper), and area

of the section of the dropper S
• Fix weight for some components of the dropper Pg

• Tension at the compensating pulley (Tension at the left support) T1

• Tension at the center of the secondary carrier Bx

• Tension at the contact wire Tc

• Deviation at the contact wire fc

• Number of contact wires nc

• Weight of the union Pe

• Weight of the secondary carrier Pc

3 Algorithm

This section describes the algorithm designed to calculate the forces, and some
other necessary results in the model of catenary described in the previous section.
A general approach to the algorithm is presented in table 1, and in the sequel the
different steps followed for it are described.

3.1 Calculation of the loads at the droppers of the secondary carrier

Unions B1 and B2 are the support for the secondary carrier, in which there is a
tension at its center with a known load Bx. This load is the horizontal tension of
the wire, and then it is a constant equivalent to the horizontal component of the
reaction in the union. To calculate the vertical component, it is supposed initially,
that the weight of droppers is zero, (P b

pi = 0), because the length of the droppers
is unknown. Under the assumption that each dropper is supporting its own weight,
half of the weight of the contact wire located between two consecutive droppers,
and some constant weight P b

g :
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Table 1: General algorithm.

1. data input

2. Initialization

2.1 Own weight of droppers is null. Ppi = 0

2.2 Vertical distance from B1 to B2, C = 0

3. while not convergence do

3.1 Calculation of vertical reaction at the unions B1y and B2y

3.2 Calculation of reaction at the supports Ax, A1y and A2y

3.3 Calculation of the length and deviation of the droppers

of main carrier

3.4 Calculation of the length and deviation of the droppers

of secondary left and right carriers

Rb
i = nc · q · (xb

i+1 − xb
i−1)

2
+ P b

g + P b
pi , i = 1...nb (1)

And vertical reactions in the unions are:

B1y =
nb∑
i=1

Rb
i + pb · Lb + Pe +

Pc

2
(2)

B2y =
nb∑
i=1

Rb
i + pb · Lb + Pe +

Pc

2
(3)

3.2 Calculation of the loads at the droppers of the main carrier

As the previous case, to determine the reactions at the supports, It is necessary to
know the value of the loads at the droppers. Thus, it is supposed that each dropper
is supporting its own weight and half of the weight of the contact wire between two
consecutive droppers. Furthermore, it is supposed also that, initially, the weight of
the droppers is zero (P a

pi = 0), because at that point their length are unknown.
If the contact wire has a parabolic shape with a central deviation fc, which

produces a counterload q′. Thus, the following expression is obtained:

fc =
q′

2 · Tc
· (xa

na − xa
1)2

4
, q′ =

8 · Tc · fc

(xa
na − xa

1)2
(4)

This counter load is compensated an overload in the extreme droppers, and thus
the total load of the droppers of the main carrier is obtained.
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Figure 2: Diagram of free solid for the main and secondary carriers.

3.3 Calculation of the reactions in the supports of the main carrier

If the balance for main carrier is considered, this one will be subject to its own
weight, loads of the droppers which are suppose known, and reactions at the sup-
ports A1, A2 and reactions at the unions B1, B2 Thus, the components of these
reactions will be, for A1: Ax, A1y , for A2: Ax, A2y , for B1: Bx, B1y , and for
B2: Bx, B2y.

Of these values, at the beginning it is only known the tension at the secondary
carrier Bx, and the complete reaction at A1, that is, T1 which corresponds to the
tension at the compensating pulley. Then, to calculate the component A1y consid-
ering the balance equation of moments with respect to support A2, the following
expression is used

C = fB2 − fB1 (5)

According with Figure 2, the resulting moment of weight, droppers and reac-
tions of main carrier with respect to support A2 is

MpA2 =
i=na∑
i=1

Ra
i · (L−xa

i )+
pa · L2

2
+By1 · (L−Lb)+By2 ·Lb +Bx ·C (6)

Initially, it is unknown the vertical position of the unions fB1, fB2, and then
C, because this position depends of the deformation of the main carrier, which is
unknown, due to that this problem is hyperstatic, then to obtain a first approach to
the reactions, C can be considered as zero, and then
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H = Hc1 − Hc2 (7)

Considering the equation of forces momentum equilibrium applying on the main
carrier with respect of support A2, and taking into account that tension at the main
carrier in left support is known:

∑
MA2 = 0 , A1y · L − Ax · H − MpA2 = 0 (8)

T1 =
√

A2
x + A2

1y , Ax =
√

T 2
1 − A2

1y (9)

To calculate A1y , the equation (9) is replaced into (8), and then, removing radi-
cals and sorting terms obtaining a second order equation in A1y

A2
1y · (L2 + H2) − A1y · (2 · MpA2 · L) − T 2

1 · H2 + M2
pA2 = 0 (10)

From where the values of A1y and Ax are obtained.

3.4 Calculation of deviations and lengths of the droppers of the main carrier

It is needed to know, at the first place, the deviation in the union with respect to
the general system reference. According to Figure 3, and considering the part of
the carrier between support A1 and the union B1, and taking the momentum with
respect the point B1, the following expression is obtained:

∑
MB1 = 0 , fB1 =

1
Ax

· (A1y · Lb − pa · L2
b

2
) (11)

Next, the deviation at the right union B2 can be obtained:
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fB2 =
1

Ax
· (A2y · Lb − pa · L2

b

2
) + H (12)

Again, according to Figure 3, and taking the momentum with respect to the
position Ci of each dropper:

∑
MCi = 0 , fa

i =
1

Ax + Bx
· [A1y · xa

i − pa · (xa
i )2

2
−

j=i∑
j=1

Ra
j · (xa

i − xa
j ) −

B1y · (xa
i − La) + Bx · fB1] , i = 1 . . . na (13)

And length and weight of these droppers will be:

La
pi = Hc1 + fa

ci − fa
i , P a

pi = La
pi · S · γ , i = 1...na (14)

3.5 Calculation of the deviations and lengths of the droppers of the
secondary carrier

The corresponding deviation for a dropper situated in the secondary carrier is cal-
culated in a similar way of that of the main carrier, taking the momentum with
respect the generic point Di, which represents the position for each dropper, and
adding the deviation in the union, we obtain the following expression for the left
secondary carrier:

∑
MDi = 0 , f b

i =
1

Bx
[(B1y − Pe) · xa

i − pb · (xa
i )2

2
−

j=i∑
j=1

Rb
j · (xb

i − xb
j)]

+ fB1 , i = 1 . . . nb (15)

In a similar way for the right secondary carrier:

f b
i =

1
Bx

[(B2y − Pe) · xa
i − pb · (xa

i )2

2
−

j=i∑
j=1

Rb
j · (xb

i − xb
j)] + fB2 , i = 1 . . . nb

Length and weight of droppers situated in the left secondary carrier will be:

Lb
pi = HC1 − f b

i , P b
pi = Lb

pi · S · γ , i = 1 . . . nb (16)

And length and weight of droppers situated in the right secondary carrier will
be:

Lb
pi = HC2 − f b

i , P b
pi = Lb

pi · S · γ , i = 1 . . . nb (17)

Now, the new value of vertical distance between B1 and B2 is defined:

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

Computers in Railways IX  863



Figure 4: Data input.

C = fB2 − fB1 (18)

For the new lengths, weight of droppers and distance C, it is necessary to calcu-
late again the new values of vertical component of reactions at the unions, referred
as B′

1y and B′
2y , and the supports, called A′

1y and A′
2y , according with the previous

considerations.
Finally, the convergence of the algorithm, according with a parameter ε, mean-

ing the relative error allowed for the calculation, is checked. Then, the following
comparison is carried out:

∣∣∣∣∣
A1y − A′

1y

A′
1y

∣∣∣∣∣ ≤ ε ∧
∣∣∣∣∣
B1y − B′

1y

B′
1y

∣∣∣∣∣ ≤ ε (19)

In an affirmative case, the values of A1y and B1y are correct, and also the values
for the deviations and lengths of droppers so calculated. In case of this conditions
does not verify, these value will not be correct, and then it is necessary another
iteration, where A1y = A′

1y , and B1y = B′
1y , repeating again the process until it

is satisfied the condition expressed in equation (19).
Once finalized the mechanical calculation of the span, it is possible renumbering

again the droppers with the corresponding lengths and deviations in the general
system.

4 The software tool

The algorithm presented in the previous section has been implemented as part of
a software tool, called CALPE. It has been written on an object-oriented database
system with a visual interface under Windows 98. This framework is supported in
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Figure 5: Input/output window.

the Visual FoxPro ( c© Microsoft) environment, and it is currently used by RENFE,
the Spanish company of railways, in the development of its electrical catenary
systems.

The tool, whose current user interfaces are in Spanish, consists of a menu,
where it is possible to choose several options, among them the maintenance of
the database system, designed with several files implementing the different tables
of a relational database system following a previously designed entity-relation
scheme. These tables implement the different components of the two catenary
models described in this paper, the normal and the stitched span, and these models
of catenary wires are represented by tables implementing different types of wires
(carrier and contact), droppers, etc.

The main procedure in the tool is the design of the catenary. There are two proce-
dures implementing this design, the so called ”normal”, in which it is implemented
the algorithm presented in [2], and the ”stitched”, implementing the algorithm here
presented. This procedure is also divided into two parts, defined each one of them
over a window in a friendly user interface. The first one consists of the input of the
different data types, selected among the previously introduced components in the
database system, and some other new data types. In Figure 4 an example of data
introduction over a window of the tool is presented.

After that, the output results are presented in another window, again divided
into three sections, the first one showing the main results of the calculations. The
window with the collection of input/output data is shown in Figure 5.

Finally the table of lengths of the droppers is shown in two windows, the first
one (see Figure 6) where the data are presented in an array of data, and the second
one (see Figure 7), where the data are presented in a picture showing the shape of
the catenary.
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Figure 6: Table of droppers.

Figure 7: Picture of droppers.

5 Conclusions and future work

In this work an algorithm to calculate an electric power line (catenary) for railways
has been presented, considering an advanced model of the wire called the stitched
catenary, in which the carrier is divided into a main carrier and two secondary
carriers. This model have the advantage of a lower variation of the stiffness of the
span.

In a normal model of the catenary, it is known that the deformation of the cate-
nary due to the up pressure of the pantograph over the contact wire is a little lower
in the center of the span than in the supports, and this may cause oscillations in the

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

866  Computers in Railways IX



pantograph. Thus, this problem is avoided in the model here presented, by allowing
to the contact wire to have a little deviation at the center of the span, and placing a
false carrier in the supports, obtaining in this way a more uniform stiffness along
the span.

This algorithm, and the algorithm with the calculations relative to the normal
span case, has been implemented in a software tool (CALPE), developed by the
University of Castilla-La Mancha, and currently used by RENFE (Spanish com-
pany of railways) to design the catenaries of its railways, obtaining better quality
lines.

Nowadays, it is under study more considerations related with the stiffness of the
span, covering the static case, in which the force of the pantograph over the contact
wire is punctual [1].

The future work will take into account the dynamic case, in which we will study
the force of the pantograph taking into account that this pantograph is in motion
along the wire at a high speed. The knowledge of the stiffness will allow us a
better structure of the electrical system of the catenary, due to a bigger correctness
in the deviation of the span, and a bigger correctness, also, in the calculation of the
tension and length of the carrier, having an uniform stiffness along the span.
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