
Object-oriented approach for Automatic Train
Operation control systems

F. M. Rachel & P. S. Cugnasca
Safety Analysis Group, São Paulo University, Brazil

Abstract

In this paper, an object-oriented approach for Automatic Train Operation (ATO)
is discussed in order to compare it to the traditional event-oriented software
developed and now used on most of these kinds of systems.
 In the last decades, the object-oriented approach has been used in a growing
number of applications because it supplies flexibility and understanding easiness
for the applications. The UML (Unified Modelling Language) supplies many
tools for project analysis and documentation. The various UML diagrams allow
many points of viewing the project: the static dimension (class diagrams), the
dynamic dimension (sequence and state diagrams) and the method dimension
(data flow diagrams). The ATO systems, however, had their development
aligned to microprocessors development. So, the ATO software has born on
assembly form, because ATO systems were concerned with microcontroller
applications. With the rise of the C language, many ATO functions were
developed in the C language and added to libraries. This was a first step on
building pattern routines for ATO functions treatment. The C language allows
firmware commands to be handled in a high-level way and this ability led its use
for electronics systems controllers.
 Nowadays, on São Paulo’s subway system, about 77 trains have ATOs with
microprocessors. Among these trains, about 19 trains have ATO software
developed in the C language and no train has ATO developed by the object-
oriented method. So, this paper analyses the object-oriented approach feasibility
for ATO systems. For future applications, we are studying the use of fuzzy logic
for train movement control and also studying the development of an ATO fuzzy
control software based on the object-oriented approach.
Keywords: Automatic Train Operation, control systems, train control, object-
oriented project, object-oriented analysis, object-oriented approach, event-
driven approach.

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

1 Traditional event-driven control system

1.1 History

Historically, Automatic Train Control (ATC) systems have the same type of
development as the microcomputer systems. This happened because ATC
systems were always based on the railway technologies and these technologies
were tied to microprocessors development.
 Since the second half of 19th century, the railway systems have improved
using several technologies based on the available hardware. Table 1 shows the
historical development of these technologies and the devices used [1].

Table 1: Abstract of technologies used on railway systems [1].

Year Technology/Devices used
1850 Mechanical devices
1925 Glass tube devices
1955 Transistor devices
1970 Microprocessor devices

 Software developments were limited to the hardware available. Until 1970,
the ATC systems functions were realized by electromechanical devices. Relays,
glass tubes or electronic circuits (with transistor, diodes, resistors and capacitors)
were used to perform the ATC functions and the systems were developed by
electrical engineers [1].
 With the microprocessors arising, software languages were introduced to the
ATC history. Initially, the software language used was the microprocessor
assembly language. The peripheral electronic devices were connected as
input/output (I/O) to/from the microprocessor. Some electrical and electronic
engineers and technicians became specialized on control software development
and the first control programs were developed in assembly language. As the time
passed by, some pattern control routines were grouped and the first libraries with
standard functions were made available by the microprocessor manufacturers.
 The arising of C language was a mark on the control software field, because
the C language has many facilities for direct firmware handling and has the high-
level programming language characteristics. These characteristics made the C
language the control software developers main option until nowadays. Many
graphical and mathematical functions were grouped and special libraries were
made available for control systems use.
 The advent of object-oriented techniques has brought many changes to the C
language resulting on the C++ language used for object-oriented systems
development. Many libraries and standard objects were made available, but
traditionally the control systems are developed on event-driven approach using C
or assembly language. This approach is preferred to object-oriented one [2].
 In this paper, an object-oriented control system is proposed to be compared to
a traditional event-driven control.

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

422 Computers in Railways IX

1.2 Traditional event-driven control system characteristics

As written in the previous item, the event-driven control software was previously
tied to microprocessors development. So, the event-driven control software has a
procedural aspect. The microprocessor firmware is controlled by a sequential
command list.
 The event-driven control systems are often developed using structured
analysis. This approach is based on data flow and contents mapping, where the
processes are represented by circles and the data flows are represented by arrows
connecting the processes. The software artefacts of this approach are data and
control flow diagrams. Using these diagrams, a behaviour model is created and
all technical specifications give additional details for the software elaboration
[2].
 After the technical specifications were made, the next step is to put the plans
into practice. This is made by means of the architectural project, where the
processes and data flows are integrated. Then, the control structure is translated
on a command sequence called procedural project [2].
 The program modularisation is used to implement the various software
functions. This modularity is very useful on the software testing phase, because
the errors can be located, isolated and handled. This characteristic gives
flexibility to the control software.
 Another important event-driven control system characteristic is the real-time
application. Real-time software is highly connected to the real world and must
give responses on its time scale. Because of this quick response requirement, the
real-time control systems are often dedicated systems and have a customized
project [2].
 Real-time control systems require time response and lead to an interruption
treatment with special care. A most important task must be attended on a
specified time period regardless of other events. The normal processing must be
interrupted and the corresponding interruption must be handled. In real-time
applications, the interrupt treatment is so important that often an additional
hardware to implement this interrupt control is required.
 In order to keep the normal processing, the return address and the registers
contents must be saved before the interrupt treatment. This task is so important
that it is implemented on the microprocessor firmware to make it automatic
when an interrupt is generated.
 The reliability real-time requirements are also important in the cases of
restarting and after fault recovering. Critical systems where the control loss is
unacceptable often have additional hardware (redundancy) for fault identification
and recovering.
 The automatic train control system must have a fail-safe philosophy – in the
case of fault, the system must be led to a safe condition [2]. This fail-safe
philosophy is the base of all São Paulo’s subway company systems.
 All of these real-time requirements must be either attended by object-oriented
control systems. These requirements are control systems characteristics and must
be attended independent of the used project approach.

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

Computers in Railways IX 423

2 The proposed object-oriented control system

Now, we present a proposed object-oriented control system. It is only a possible
solution among many others and it starts since it’s beginning on the object point
of view based on the Unified Modelling Language (UML). The UML represents
a well defined and standardized methodology developed for object-oriented
projects creation and it uses several diagrams for static, dynamic and method
aspects project characterization [3]. Figure 1 shows these aspects and the
respective diagrams.

Figure 1: Static, Dynamic and Method aspects of a project.

 The system project and construction process have many phases, each one
focusing a system aspect. The final result of each phase is a software artefact for
system project and construction guide. The model that determines these phases is
called waterfall model and is shown on figure 2 [3].

Figure 2: Waterfall model and the software artefacts related to each phase.

Dynamic (or Behavior)
Dimension
- Sequence diagram
- Interaction diagram
- State diagram

Method Dimension
- Algorithms
- Methods
- Equations
- Rules

Static Dimension
- Class diagram
- Associations
- Aggregations, inheritances

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

424 Computers in Railways IX

2.1 System engineering

In this phase, the problem understanding is essential to the project success. The
system to be controlled is the Automatic Train Control (ATC). The ATC has two
main functions - Automatic Train Operation (ATO) and Automatic Train
Protection (ATP). The whole system is composed by the ATC, track signal
antenna, programmed stop antenna, tachometers and the Logic Control Box. The
Logic Control Box main functions are: propulsion type identification (traction or
brake) and motors/brakes control actuation in order to accelerate/brake the train
(Figure 3).

Figure 3: Schematic diagram of the ATC system.

ATC

(Automatic Train Control)

Brake/
Propulsion

Amount of
Brake/

Propulsion

Operator

TachometerProgrammed
Stop

Antenna

Track Signal
Antenna

Programmed
Stop

Real
Speed

Commanded
Speed

Movement
Rules

Figure 4: IDEF0 Level 0 (Context Diagram) for ATC modelling.

ATP Controller

ATO Controller

Tachometer

Logic
Control

Box
Track
Signal
Antenna

Programmed
Stop
Antenna

ATC

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

Computers in Railways IX 425

 The business plan is a software artefact to be produced to demonstrate the
problem understanding. It must be produced in a visual representative form and
not only in a text form. One artefact used to represent the business plan is the
IDEF0 (Integration Definition for Function).
 The IDEF0 has a pattern graphical notation to represent the information flow
and the processes used. The IDEF0 has a hierarchical top-down architecture,
where processes can be expanded and detailed in hierarchical diagrams. The
main process is represented in the IDEF0 top diagram called IDEF0 level 0 or
context diagrams [4]. Figures 4 and 5 show the IDEF0 – levels 0 and 1 for ATC
modelling.
 With the IDEF0 diagrams, the analyst can characterize the system to be
implemented, its contents, functions, boundaries and context. The system
engineering phase must either detail time and costs needed to implement the
solution [3].

Train
Movement

Programmed
Stop

Amount of
Brake/Propulsion

Brake/
Propulsion

Programmed
Stop

Antenna
OperatorTachometer

Track
Signal

Antenna

Programmed
Stop

Real
Speed

Commanded
Speed

Movement
Rules Programmed

Stop

Figure 5: IDEF0 Level 1 for ATC modelling.

2.2 Analysis

After an extensive problem comprehension, the next step is to draw a solution
for the problem. This solution must consider the static and dynamic aspects of
the system to be implemented and is the base of the system architecture [3].
 The UML has some diagrams to represent the system static model as class,
objects or use case diagrams. Each diagram must be used in order to attend the
system representation needs. The class diagram shows the classes, its attributes
and functions besides the relations of interaction, aggregation and inheritance
between classes [4]. Figure 6 shows the class diagram for ATC modelling.
 The UML language has some diagrams to represent the system dynamic
model, as collaboration, state and sequence diagrams. State diagrams show
possible system configurations (states) and the events that lead the system from
one state to another. Sequence diagrams show the system behaviour during the

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

426 Computers in Railways IX

time under circumstances given by certain scenarios [3,5]. Figure 7 shows the
state diagram and figure 8 shows the sequence diagrams for three different
scenarios on ATC modelling.

Speed

Speed

SetSpd()
ReadSpd()

Commanded
Speed

Commanded
Speed

SetComSpd()
ReadComSpd()

Real
Speed
Real

Speed

SetReaSpd()
ReadReaSpd()

Propulsion

Intensity
Type
On()
Off()

ReadInt()
SetInt()

ReadTyp()
SetTyp()

Operator

BrkOn()
TrkOn()

Brake

Intensity

On()
Off()

Traction

Intensity

On()
Off()

Programmed
Stop

State

CalcSpd()

Class
Name
Class

Attributes

Class
Procedures

Legend :

Inheritance

Figure 6: Class diagram for ATC modelling.

 The analysis phase must either present a system prototype in order to produce
a high-quality system project. In the ATC case, it is difficult to produce a
prototype, because the ATC system does not have screens or user interfaces. So,
a simple system functions simulation must be provided [3].

Stopped
Train

Train
Accelerating

Speed
Maintaining

Train
Braking

Programmed
Stop

Programmed
Stop

Programmed
StopProgrammed

Stop

Motor
On

Brakes
Off

Brakes
On

Motor
Off

Brakes
Off

Speed = 0

Programmed
Stop
End

Figure 7: State diagram for ATC modelling.

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

Computers in Railways IX 427

: Commanded
Speed

: Real
Speed : Propulsion : Logic

Box : Motor : Brakes

Commanded
Speed (>0)

Real
Speed (=0)

Traction

Motor On

Traction

Speed Increase

Real
Speed

(<Commanded
Speed)

Motor On

Speed Increase

Real
Speed

(= Commanded
Speed) Traction Off Motor Off

Speed Maintaning

e0 = Stopped Train

e1 = Train
Accelerating

e2 = Speed
Maintaning

e1 = Train Accelerating or
e3 = Train Braking

Scenario 1 - Speed Control - Train Accelerating
: Commanded

Speed
: Real
Speed : Propulsion : Logic

Box : Motor : Brakes

Commanded
Speed

Real
Speed

(> Commanded
Speed) Brake

Brakes On

Brake

Speed Decrease
Real

Speed
(> Commanded

Speed)

Brakes On

Speed Decrease

Real
Speed

(= Commanded
Speed) Brake

Off Brakes Off

Speed Maintaning

e2 = Speed
Maintaning

e3 = Train
Braking

e2 = Speed Maintaning or
e0 = Stopped Train

e1= Train Accelerating or
e3 = Train Braking

Scenario 2 - Speed Control - Train Braking
: Programmed

Stop : Propulsion : Logic
Box : Motor : Brakes

Programmed
Stop Start

Programmed Stop
Brake

Brakes On

Programmed Stop
Brake

Speed Decrease

Programmed Stop
Running

Brakes On

Speed Decrease

Programmed Stop
End Maximum

Brake
Brakes On

Stopped Train

e1 = Train Accelerating, e2 = Speed Maintaning or
e3 = Train Braking

e4 = Programmed
Stop

e0 = Stopped Train

Scenario 3 - Programmed Stop

Figure 8: Sequence diagrams for ATC modelling.

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

428 Computers in Railways IX

2.3 Project, construction and validation

After the whole system modelling, the next step is to put the plans into practice.
All the functions set on the previous phases must be implemented by means of
hardware and/or software. The software must be split into modules (or
components) to facilitate the implementation. In the project phase all the
modules and components must be technically specified and dimensioned [3,5].
 The UML has a component diagram used to show software modules to be
implemented. In the case of the ATC, the component diagram is just the class
diagram divided on components, each one with a particular functionality.
Figure 9 shows the UML components diagram for the ATC modelling.

Speed

Speed

SetSpd()
ReadSpd()

Commanded
Speed

Commanded
Speed

SetComSpd()
ReadComSpd()

Real
Speed
Real

Speed

SetReaSpd()
ReadReaSpd()

Propulsion

Intensity
Type
On()
Off()

ReadInt()
SetInt()

ReadTyp()
SetTyp()

Operator

BrkOn()
TrkOn()

Brake

Intensity

On()
Off()

Traction

Intensity

On()
Off()

Programmed
Stop

State

CalcSpd()

C1 = SPEED

C2 = PROPULSION

C3 = PROGRAMMED STOP

C4 = OPERATOR INTERFACE

Figure 9: Component diagram for ATC modelling.

 The following phases are the construction and validation. In the construction
phase, the software modules are coded on a specified programming language and
in the validation phase the system is tested and put into operation.

3 Comparisons and conclusions

The object-oriented project developed on the previous section showed that an
object-oriented approach is possible for automatic train control systems
development. The real-time operation limits present on the object-oriented
project are also present on the event-driven control system.
 The traditional control system is composed of a main program, many
subroutines and a special interrupt routine where all the interruptions caused by
external devices (like antennas and tachometers) are handled. Additional
hardware for this interruptions treatment is often required, in order to
synchronise, organise and give priority to the interrupt requests. The main
program is run several times and stopped when an interrupt is generated.

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

Computers in Railways IX 429

 The object-oriented approach, on the other hand, is composed by many
objects whose internal processes are simultaneously running. When an event
occurs on an external disposal, the respective object generates an exception (a
message) to the propulsion object that handles the event. The communication
between objects is a critical point for real-time applications like the ATC. So,
additional control hardware for this communication is also required. Each object
runs its processes in an independent form and stops when a relevant event occurs
[3,5].
 The traditional control system is centred on the hardware control, putting all
external devices to work together with the microprocessor while the object-
oriented control system is centred on software functions needed to perform the
system functions. There are no better or worse method, but because of historical
reasons and as control systems are narrow related to electronics engineering,
there is a paradigm to prefer event-driven to object-oriented methods. There are
many object-oriented control systems, but they are minority on this field.
 Nowadays, on São Paulo’s subway system, about 77 trains have ATOs with
microprocessors. Among these trains, about 19 trains have ATO software
developed on C language and no train has ATO developed on object-oriented
method. For future applications, studies on using predictive fuzzy logic are being
developed by São Paulo’s Subway Company with the Safety Analysis Group
from São Paulo’s University. The predictive fuzzy logic has been proved to be
perfectly suitable for train movement control and it could be added on a new
ATC project. These studies intend to implement this new ATC project using an
object-oriented approach.

References

[1] United States Congress – Office of Technology Assessment, Automatic
Train Control in Rail Rapid Transit (Appendix E), Chronology of Train
Control Development, http://www.wws.princeton.edu/cgi-bin/byteserv.prl
/~ota/disk3/1976/7614/761414.pdf.

[2] Pressman, R. S., Engenharia de Software, A Análise Estruturada e Suas
Extensões, Análise Orientada a Objeto e Modelagem de Dados e Projeto
de Tempo Real, Makron Books, 1995.

[3] Rumbaugh, J. et al., Modelagem e Projeto Baseado em Objetos, Ed.
Campus, 1994.

[4] FIPS – Federal Information Processing Standards Publication (FIPS Std
183), Integration Definition for Function Modelling (IDEF0), 1993.

[5] De Champeaux, D., Lea, D. & Faure, P., Object-Oriented System
Development, Object Dynamics and Object Interaction, Addison Wesley,
1993.

Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9
Computers in Railways IX, J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto & S. Sone (Editors)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-715-9

430 Computers in Railways IX

