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Abstract 

Efficient evaluation and comparison criteria of network timetables are not yet 
well-defined and planners usually have to rely on time-consuming simulations of 
(sub)networks. PETER (Performance Evaluation of Timed Events in Railways) 
is a new analytical tool that quickly assesses network performance indicators in a 
deterministic setting corresponding to the design times used in timetable 
construction. A timetable represents the steady-state according to which trains 
should operate. Timetable performance is then analysed as the effort of returning 
to the steady-state after disruptions. Systems of interconnected train services 
have a special structure that can be described by (max,+) recursions, resulting in 
a linear system in max-plus algebra. Efficient algorithms have been developed to 
analyse such systems in real-time. Performance indicators include cycle times, 
throughput, and stability margins, which are related to critical circuits in the train 
network. Timetable robustness is analysed by cumulative recovery times and 
delay propagation. 

1 Introduction 

Train operations are typically exposed to random variations in train running 
times and dwell times resulting in primary delays. Moreover, once a train is 
delayed this may produce severe delay propagation over the network when trains 
are highly interconnected. The sensitivity to delays of a train network timetable 
is managed by incorporating recovery times or buffer times. A robust timetable 
must be able to deal with a certain amount of delay without intervention of 
process operators. Timetable robustness is thus comparable to the amount of 
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effort for schedule adherence after disruptions. Evaluating a train network 
timetable on robustness is an important part of the timetable design process and 
typically requires a computer-aided approach, as the (circular) interactions of 
train movements on a railway network are very complex. 

Performance of a rail traffic network depends on many aspects. However, the 
operational traffic conditions are completely summarized in the timetable. A 
timetable implicitly includes the set of train lines, train characteristics, and rail 
infrastructure (railway network and signalling system) Alternative line systems 
or altered allocations of train types to lines (and thereby changed running times) 
result in distinct network timetables that can be evaluated separately. 

Railway planning systems that are capable of analysing large-scale highly- 
interconnected timetables are rare. Simulation is usually pursued to analyse 
complex systems when no analytical tools are available. However, simulation is 
typically very time-consuming, which forces railway planners to concentrate on 
stations or rail corridors and thereby discarding network interdependencies. 
Recently some tools have been developed that analyse train traffic on large-scale 
railway networks. FASTA [l]  is a Swiss stability analysis tool based on 
simulation. In the Netherlands, the simulation system SIMONE [2] has been 
developed for testing stability. This tool is compatible with the Dutch timetable 
design system DONS [3]. CAPRES [4] is a recent developed Swiss analytical 
capacity analysis system based on saturation of timetable variants. 

This paper presents PETER (Performance Evaluation of Timed Events in 
Railways), an analytical tool based on a (system-theoretic) max-plus algebra 
performance evaluation approach [ 5 ] .  The railway model and a first prototype 
has been introduced at COMPRAIL 2000 [6]. Based on this experience, Delft 
University of Technology decided to cooperate with ORTEC to develop a user- 
friendly decision support system for railway planners. PETER now combines 
state-of-the-art efficient mathematical algorithms with a graphical man-machine 
interface that suits railway planners. This system is presented in the current 
paper. For mathematical details we refer to Goverde & Soto y Koelemeijer [7]. 

The paper is outlined as follows. The next section introduces the PETER 
max-plus algebra modelling approach. Section 3 considers the PETER user- 
interface. The analysis opportunities and network performance indicators are 
explained in Section 4. Section 5 presents an application to the Dutch intercity 
network of 2000-2001. Finally some conclusions are presented. 

2 Max-Plus Algebra 

PETER is based on the max-plus algebra modelling of transportation networks 
[6],[8]. Here, the train network dynamics are described as a Discrete Event 
Dynamic System (DEDS), that is, train movements are modelled by the 
occurrence of discrete events and in particular train departures. The actual model 
is a timed event graph and its state representation consisting of (max,+)- 
recursions. This abstraction generates a mathematical structure that is capable to 
capture large-scale but tractable models whereas it keeps the essential features of 
complex train interactions. The (max,+)-recursions can be viewed as linear 
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(dynamic) systems in max-plus algebra. A system theory has been developed for 
the analysis of max-plus linear systems analogue to conventional system theory 
of differential or difference equations, see Baccelli et al. [5]. 

This paper concentrates on network timetable evaluation in a deterministic 
setting. All process times (running times, dwell times, transfer times) and 
headway times are assumed to be deterministic corresponding to the design times 
used in the timetable design. The max-plus model is a discrete-event system that 
can be represented as 

x(k+ 1) = A @x(k) 0 d ( k  +1) ,  (1) 

where x(k) is a vector of the train departure times after k periods (hours), d(k) is a 
vector of the scheduled departure times in the kth period, and A is the state 
matrix containing the process times between timetable (departure) events. The 
construction of the state matrix A also reflects train (departure) orders and the 
allocation of trains to the network, whereas the vectors x and d may be 
augmented to obtain the first order representation of eqn (l), see [6],[7]. The 
mathematical operators 0 (maximum) and 0 (addition) are the basic max-plus 
algebra operators, see e.g. [6],[8]. The first term on the right-hand side of eqn (1) 
is the ready-to-depart time vector based on the current state and the process times 
applied in the current period. Eqn (1) can then read as follows: the departure 
times in the next hour are the maximum of the ready-to-depart times (1 st term) 
and the scheduled departure times (2nd term). Current delays are thus propagated 
if an entry of the 1st term exceeds the 2nd term and otherwise the trains wait on 
their scheduled departure time. 

Network analysis methods usually concentrate on critical paths in the 
network (PERTKPM), whereas analysis methods of dynamic systems focus on 
steady-state solutions. In the case of periodic operated train networks, the critical 
circuits in the network and the periodic timetable are the main focus points. 
PETER contains critical circuit analysis on the one hand and timetable 
robustness on the other hand. The critical circuit determines the least cycle time 
in which a periodic timetable may operate, whereas the timetable constitutes the 
steady state according to which trains should operate. 

PETER has been developed to analyse periodic timetables in which all train 
departures repeat at a regular (hourly) interval. In the Netherlands and most 
European countries this timetable strategy is pursued. However, the method is 
not restricted to periodicity and can be adapted to suit other timetable concepts. 

3 PETER Interface 

PETER is a stand-alone stability analysis tool for periodic timetables of highly- 
interconnected large-scale train networks. The tool contains the following 
hnctionalities: 

data import and automatic model building, 
data view and editor, 
analysis computations, 
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0 results view and network visualization, 
0 data and results export. 

PETER has a modular system architecture written in Delphi and runs on a 
standard PC under a Windows 95/98/NT/2000 operating system. The policy 
iteration algorithm of the critical circuit analysis is a callable routine 
implemented in C. The modular design facilitates future enhancements. 

Networks can either be created using the build-in editors or imported from 
ASCII input files with a prescribed format. A generic data input file contains 
information on stations, train lines, and connections, and is easily generated by 
standard text editors or spreadsheets. After reading the input data, PETER 
automatically constructs the max-plus model and draws the network view. A 
build-in editor can also be used to edit data. After editing a feasibility check 
follows and a new max-plus model is constructed. Edited or manually inserted 
networks in PETER are also saved in the generic format. 

The modular system architecture of PETER enables easy extension of 
functionalities. As an example, a module is provided that directly imports data 
files from the Dutch timetable design tool DONS [3]. Another envisaged 
extension is a direct access link to the DONS Data Market [9], by which railway 
planners at Railned or NS Reizigers can apply PETER directly with the full 
functionality of DONS. 

The delay propagation module requires a set of initial delays, which can be 
inserted manually or imported from a delay file. Manually inserted initial delays 
can also be saved to the standard delay file for future usage. The delay files 
enable easy access to a range of scenarios for delay propagation. 

In the menu Tools the analysis computations are activated. A disabled 
computation item means that computed results are still valid. In the Tools menu 
the user can also choose to include or exclude all transfer times. A toggle denotes 
the current status. By excluding transfer times the situation is analysed where 
transfer connections can be cancelled, the so-called controlled network. The 
analogue holds for layover times. Excluding layover times presumes that reserve 
trains are available when necessary or that train circulations are not fixed to train 
line routes. 

Results can be shown in tables, visualized in the network (see Section 5), and 
saved in output files. Also the constructed max-plus model can be saved in an 
output file. 

4 Stability Analysis 

4.1 Introduction 

The max-plus model of the train network consists of two parts: the state matrix 
constructed from process times between timetable events, train orders, and the 
allocation of trains to the network, and the timetable vector containing the 
scheduled event times. Analysis of the state matrix identifies critical circuits and 
network stability indicators associated to the train network structure 
(interactions, departure sequences, train allocation). This critical circuit analysis 
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requires computation of the eigenvalue and eigenvector of the matrix A (in max- 
plus algebra), i.e. solving 

A @ v = A @ v .  (2) 

A very efficient policy iteration algorithm [lo] is implemented in PETER to 
solve the eigenvaluq (problem (2). Even large-scale networks of several 10,000 
variables are solved withih a few seconds. The eigenvalue 1 is the minimum 
network cycle time and the eigenvector v the corresponding timetable [8]. This 
timetable gives the earliest possible departure times (with respect to the imposed 
train allocation and train orders) according to which the train network can 
operate with minimum cycle time. Applying this (feasible) timetable yields the 
earliest operation mode (EOM) of the train network. Critical circuit analysis is 
considered in more detail in Section 4.2. 

The actual periodic operation mode (POM) of the train network that is 
governed by the given network timetable - modelled as the timetable vector - 
differs from the EOM by additional slack times between events. These slack or 
buffer times are necessary for robustness of the timetable. A second stage in the 
network analysis therefore focuses on the distribution of buffer times over the 
network timetable. This is referred to as recovery time analysis. Also delay 
propagation can be utilized to analyse timetable sensitivity to sets of initial 
delays. Recovery time analysis and delay propagation are considered in Section 
4.3 and 4.4, respectively. 

4.2 Critical Circuit Analysis 

As already mentioned, analysis of the state matrix A gives the minimum cycle 
time in which the train network could operate. This minimum cycle time equals 
the average travel time of trains on the critical circuit in the network. This critical 
circuit is thus the ‘slowest’ circuit in the network. The critical circuit analysis 
computes the following network performance indicators: 

0 the minimum cycle time h, 
0 the throughput p = h / T, where T is the actual cycle time (usually T = 60), 
0 the stability margin A. 

The implications of these indicators are presented in some detail below. Also the 
associated critical circuits are explicitly identified. Improving system stability 
then implies to present changes in the sequence of critical processes that make up 
the critical circuit. Possible actions are changing train orders, adding (or move) a 
train to one of the critical processes, or decreasing the critical process time by 
e.g. faster train units, shorter dwell times, shorter transfer times (cross-platform 
transfers), or infrastructure investments. 

4.2.1 Cycle Time 
The actual cycle time should clearly exceed the minimum possible one. This 
represents a stability test: if A I T then the system is stable. However, if A is close 
to the cycle time then the system is sensitive to disruptions. Stability here means 
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that there is enough slack on the critical circuit, so that delays will surely settle. 
In practice, a network timetable contains several components (subnetworks) 

that are mutually connected only by the periodic timetable. Hence, the minimum 
cycle time corresponds to the critical circuit(s) of the most critical component. In 
a well-balanced system the critical cycle times of all components should be 
comparable, corresponding to an even distribution of trains to the network. 
PETER therefore computes the critical circuits and cycle times of each 
component in the train network. The number of components is an indication of 
the complexity or connectedness of the train system. The smaller this number is, 
the higher the system complexity. The associated range of critical cycle times 
quantify the balance between the various subnetworks. 

4.2.2 Throughput 
The throughput p is a network performance indicator denoting a trade-off 
between maximum performance (under ideal circumstances) and robustness. It 
presents the minimum cycle time relative to the actual cycle time. Obviously, a 
stable system requires 0 < p 5 1, where p = 1 is the saturated case in which the 
mean cycle time of trains on the critical circuit is just (a multiple of) T minutes. 
When p < 1 the system operates below its maximum (theoretical) performance 
and hence contains buffer times to compensate for delays. 

4.2.3 Stability Margin 
The stability margin A is a network performance indicator of robustness of the 
train network. The stability margin is defined as the maximum simultaneous 
increase of all process times such that the train network can still be operated with 
cycle time T. This margin may differ from the value T - A as another circuit may 
become critical when the process times are increased. In fact, the stability margin 
is computed by solving an auxiliary eigenvalue problem [7]. It corresponds to the 
circuit with the least average buffer time. This circuit is not necessarily the same 
as the critical circuit with the critical cycle time but depends on the amount of 
running trains in each circuit. 

4.3 Recovery Time Analysis 

A timetable generally contains slack to compensate for process time variations. 
This slack is provided in scheduled process times (e.g. running time margins) or 
between two directly interacting trains (buffer times). From a network point of 
view a sequence of train runs embraces an accumulation of slack times. These 
train sequences include train runs connected by train stops or transfers but also 
more abstract headway interactions. Note that we here use ‘train’ as a train run 
between two adjacent stations. 

For any two trains we are interested in the amount of cumulative slack time 
over a train sequence going from one train to the other. However, in general 
multiple train sequences can be considered between two trains. Therefore we 
define the cumulative recovery time from train i to train j as the minimum 
cumulative slack time over all train sequences going from train i to j in the train 
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network. Note that this is equivalent to the largest delay of train i that not reaches 
train j .  We distinguish between 3 types of indicators based on recovery times: 

delay impact of a train to all trains over subsequent train sequences, 
delay sensitivity of a train w.r.t. delayed trains on incoming train sequences, 
feedback recovery time of a train: minimum recovery time over any circuit. 

Delay impact refers to possible future delays and delay sensitivity depends on 
past delays that may have propagated over previous train sequences. The 
feedback recovery time gives the maximum delay of a train that will not return. 

A matrix of the cumulative recovery times between any two trains can be 
computed numerically using an all-pair shortest path algorithm. In PETER, the 
efficient Johnson repeated single-source shortest path algorithm for sparse 
networks is implemented [ l l ] .  This method uses the well-known Dijkstra 
algorithm as a subroutine, where the priority queue is implemented as a 
Fibonacci heap. The delay impact vector of a train i equals the i-th column of the 
recovery matrix, the delay sensitivity vector of train i equals the i-th row of the 
recovery matrix, and the feedback recovery times of all trains are given by the 
diagonal entries of the recovery matrix. 

4.4 Delay Propagation 

The max-plus model and an initial delay vector - containing the departure delays 
at a certain reference time - are used to simulate the delay propagation of initial 
delays over time and space. In fact, the max-plus (sparse) matrix equation 
generates a particular efficient single-run discrete-event simulation. The 
computation time is a fraction of a second, even for large-scale networks. 

The initial delay vector summarizes all train delays in the network at a certain 
reference time. The max-plus model then computes the delay propagation over 
the network and over future periods. The simulation output is given in different 
levels of detail. The most refined output gives the delay of each train in terms of 
the departure delay and its period-of-occurrence. The result can be given in 
tabular form or in a network visualization where the amount of delay is indicated 
by a colour scheme, see Figure 2. Aggregated output is more convenient for 
comparison of different scenarios or distinct timetables. The presented 
aggregated results are the total secondary delay, number of reached trains, 
average secondary delay, number of reached stations, and the settling period. 

By using nominal process times the emphasis of the delay propagation model 
is on analysing the interconnection structure as dictated by the timetable. 
Computations of many scenarios are achievable to find structural shortcomings 
in a timetable design or to evaluate the effect of control strategies. Different 
control strategies result essentially in distinct delay scenarios represented by an 
initial delay vector. Using the max-plus model the implications of the different 
delay scenarios are computed and compared. This scenario analysis is useful in 
deriving all kinds of standard control strategies in case of e.g. maintenance works 
and track obstructions. Also online decision support systems may benefit from 
quickly evaluating several delay scenarios to resolve detected conflicts. 
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5 Case Study: Dutch Intercity Network 2000/2001 

The Dutch Intercity (IC) Network of 2000-2001 contains 19 IC train lines 
serving 70 (IC) stations. This network is obtained from DONS and imported into 
PETER. The max-plus model consists of 317 departure events (nodes) and 361 
line segments (arcs), including 44 connections between train lines. A minimum 
of 112 trains is necessary to cover all IC train circulations. The model contains 
137 tokens, which is a measure of the problem dimension. 

The policy iteration algorithm computes 10 critical circuits associated to 10 
network components. Figure 1 shows the most critical circuit and its component. 
The critical circuit contains IC1600 and IC500 trains between Schiphol and 
Groningen, including 8 stops, 2 transfers at Amersfoort, and 2 turns at Groningen 
and Schiphol, respectively. The minimum cycle time is 55:12 minutes. The train 
network is operated according to an hourly timetable, giving a throughput of 
92%. The stability margin on this critical circuit is 1:45 minutes. 

Figure 1 : IC network, its critical circuit (black links) and associated component 
(white links), and delay sensitivity of IC 1600 Amf-Dvd (coloured nodes) 

Also the recovery matrix is computed. All trains on the critical circuit have a 
feedback recovery time of 24:OO min. As an example, Figure 1 also visualizes 
the delay sensitivity of the IC1600 train from Amersfoort to Duivendrecht (the 
coloured nodes). The preceding stops of the IC1600 train are most critical, where 
a delay at Apeldoorn has zero recovery time, whereas the robustness is gradually 
increased over the preceding stations to 4 min recovery time at Enschede. The 
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preceding stops of the feeder IC500 train are next critical, with 4 min recovery 
time after departure at Zwolle, increasing to 8 min in Groningen and 9 min in 
Leeuwarden (the trains from Leeuwarden and Groningen are coupled in Zwolle). 
Moreover, the IC1600 train may get delayed by the IC21600 from Amsterdam 
CS (1 1 min), the IC12500 from Rotterdam (13 minutes), and the IC500 from The 
Hague CS (19 min) and the intermediate stops with decreasing recovery time. 
This clearly shows tlie inteqactions in the most critical network component. 

Figure 2: Delay propagation over the IC network 

More detailed insight in the interconnectedness of the IC train services is 
obtained by studying the delay propagation of initial delays. As an example, we 
consider a scenario in which during one hour each of the 20 departing IC trains 
from Utrecht CS has a 10 minute departure delay. Figure 2 shows the resulting 
delay propagation. In total 43 stations are reached, including the terminal stations 
Groningen, Leeuwarden, and Nijmegen, where the delays propagate over new 
train circulations unless reserve train units are dispatched. The delays also reach 
5 other terminal stations, however at these stations enough buffer time is 
available to guarantee stable train circulations, i.e., new circulations can be 
initiated in accordance to the process plan. In the other directions the delays have 
been eliminated by the recovery times before reaching the terminal stations. 
Apart from the 10 initial trains, 13 additional trains get delayed, with an average 
departure delay of 5:14 min, including trains starting a new circulation. In total 
103 departure delays are computed, including the (reduced) delays at successive 
stops of a train line. Eventually, all delays are eliminated after 3 hours. 
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6 Conclusions 

Network timetables have an intrinsic structure that is conveniently modelled by 
max-plus algebra. Efficient analysis methods are applied to this max-plus model 
including spectral analysis, shortest path methods, and matrix computations. The 
stability analysis yields network performance indicators (minimum cycle time, 
throughput, stability margin), recovery times (delay impact vector, delay 
sensitivity vector, feedback recovery times), and delay propagation results. 

The max-plus modelling and analysis techniques are implemented in the 
software tool PETER. PETER has a user-friendly man-machine interface and all 
computations are in real-time. PETER is also compatible with DONS - the 
timetable design tool of the Dutch Railways. All analysis methods in PETER are 
hence available to quickly evaluate timetable structures generated by DONS, 
which is a major contribution to Dutch computer-aided timetable design. 
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