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Abstract

The vertical velocity is an important, though often neglected component of the
three-dimensional velocity field. Indeed, the computation of the vertical velocity
within the confines of a three-dimensional, finite element surface water model is a
difficult task. Although the vertical speeds are often several orders of magnitude
less than the horizontal speed at the same point, the horizontal length scales are
often several orders of magnitude greater than the vertical length scales. There-
fore, small vertical velocities may result in substantial velocity transport.

The vertical velocity is computed according to the first order continuity equation.
However, two boundary conditions are available and the system of equations is
therefore overdetermined. Previous work has considered four approaches to the
solution of this overdetermined system of equations. One of these, the Vertical
Derivative of Continuity (VDC) method involves solution of the second-order
equation obtained by differentiation, with respect to the vertical coordinate, of the
first order continuity equation. The VDC method demonstrated poor point accu-
racy as well as poor mass conservation properties. This paper examines an exten-
sion of the VDC method, the K method which invokes a penalty to improve mass
conservation. Preliminary results demonstrating point accuracy as well as mass
conservation properties are presented.



@ Transactions on Ecology and the Environment vol 17, © 1998 WIT Press, www.witpress.com, ISSN 1743-3541

356  Computer Methods in Water Resources XII

1 Introduction

Computation of vertical velocity within the confines of a three-dimensional, finite
element surface water model is a difficult but important task. Although the verti-
cal speeds are often three to four orders of magnitude less than the horizontal
speed at the same point, the horizontal length scales are often several orders of
magnitude greater than the vertical length scales. Therefore, small vertical veloci-
ties may result in substantial velocity transport.

Finite element models based upon the shallow water equations generally
solve these equations sequentially: the surface elevation is computed first, then
the horizontal velocity is determined. The final step is determination of the verti-
cal velocity according to the three-dimensional continuity equation:

L= w +V-V=0 (D

dz
where w(x, v, z) is the vertical velocity, V(x, v, z) is the horizontal velocity vec-
tor, V is the horizontal del operator, (x, y) are the horizontal coordinates and z is
the vertical coordinate, positive upwards, with z = 0 at the surface. Because the
horizontal velocity is computed before the vertical velocity, (1) is a first order,

ordinary differential equation. Two boundary conditions are also available:

oh . oh
[w: ua—x+va—y}z:7h 2)
[w=iwn], _g 3

where h is the bathymetric depth, w is the radian frequency, 7 is the free surface
elevation and i is the imaginary unit (J/~1). Either (2) or (3) can serve as the
boundary condition, but imposition of both overdetermines the system. No unique
solution exists for an overdetermined system of equations.

2 Previous Results

Previous work [Muccino et al., 1997] described four approaches to the solution of
this overdetermined vertical velocity problem:

1. Traditional (TRAD) method: The overdetermined continuity system is solved
by simply not enforcing one of the boundary conditions. However, unsatisfac-
tory accumulation of error over the water column is often encountered with
this approach.



@ Transactions on Ecology and the Environment vol 17, © 1998 WIT Press, www.witpress.com, ISSN 1743-3541

Computer Methods in Water Resources XII 357

2. The Vertical Derivative of Continuity (VDC) method: The first order continu-
ity equation (1) is differentiated with respect to the vertical coordinate, z. The
resulting second order differential equation is solved and both boundary con-
ditions are enforced. The point accuracy and mass conservation properties of
the VDC method are poor.

3. Least Squares (LS) method: The continuity equation (1) is discretized, both
boundary conditions are imposed, and the overdetermined system of linear
algebraic equations is solved by minimizing the Eulerian norm according to
the theory of least squares. Point accuracy and mass conservation properties of
the LS method are very good, but CPU and memory requirements are substan-
tial.

4. Adjoint (ADJ) method: This method is based upon the adjoint approach of
Bennett and McIntosh. While LS minimizes the residuals of the continuity
equation in its discrete form and the two boundary conditions, ADJ minimizes
the residuals of the continuity equation in its continuous form and the two
boundary conditions. Point accuracy and mass conservation properties of ADJ
are comparable to those of LS, and the CPU and memory requirements are
minimal.

3 Parallel to wave equation formulation

The current research on a penalty approach for vertical velocity calculations in an
SWE model in many ways runs in parallel with the development of the wave
equation approach for finite element models of surface water flow. Historically
grid scale oscillations seemed to be a characteristic of the solution to the shallow
water equations using the finite element method. [Lynch and Gray, 1979] recast
the shallow water equations into an equivalent form, the wave continuity equation
(WE), and in the process suppressed the spurious oscillations in a physically cor-
rect way. As discussed in the previous section, the use of the continuity equation
for computation of vertical velocities in an SWE model yields an overdetermined
system of equations because it requires two boundary conditions for a first order
differential equation. [Lynch and Werner, 1987] and [Naimie and Lynch, 1993]
introduced the second order form known as VDC, thus eliminating the issue of
overdetermination.

It was shown for WE in [Kolar et al., 1994] and for VDC in [Muccino et
al., 1997] that mass conservation is a problem with both the WE and VDC meth-
ods. Kinnmark [1986] reformulated the wave continuity equation such that the
mass matrix is time independent. The resulting equation is known as the general-
ized wave continuity equation (GWCE). The GWCE formulation has better mass
conservation properties than the WE formulation [Kolar et al., 1994]. The veloc-
ity calculation work developed in this paper, the K method, reintroduces the first
order conservation of mass equation into the second order VDC form, using a free
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parameter K, much like GWCE reintroduces the conservation of mass equation
using a free parameter G in the WE form. Mass conservation is improved for
both the GWCE and K methods. There is a difference however between the
GWCE and K methods, in that G has a temporal dimension and K has a spatial
dimension.

4 Derivation of the K method

As suggested by Lynch and Werner [1987] and Naimie and Lynch, [1993] the
VDC method involves solution of a second order equation resulting from differ-
entiation of (1) with respect to z:

_ d
= rnVV) =0 )

Because the VDC differential equation is second order both boundary conditions
(2) and (3) may be enforced. However, the restriction of the original continuity
equation is compromised in favor of the boundary condition. The resulting mass
conservation properties are poor [Muccino et al., 1997].

To enforce mass conservation the K method is now introduced. The K
method adds the continuity equation, multiplied by a free parameter K to (4):

a—L+K1‘—a—w+Ka +K(V- V)+—(V V)y=20 5)
aZ az a
If K is set equal to O in (5) VDC results. The Galerkin finite element method is
implemented to solve (5) using a one-dimensional discretization, from the bot-
tom(z, ) to the surface (z, ). The weighted residual form of (5), after integration
by parts is:

e,
%Wa‘i + 5 ¢,l JKa @iz = - J (V-V)gol-dz—J.K(V-V)qaidz (6)
Q

where ¢, are weighting functions, Q represents the one-dimensional domain,
and T is the boundary of 1, specifically the surface and the bottom. Because the
vertical velocity at both boundary nodes is specified, (6) needs to be written only
for interior nodes (nodes 2 through » - 1) such that the boundary term vanishes.
A Galerkin formulation with linear Lagrange weighting functions yields:

2
w=Twe, g
j=1
Substitution of (7) in (6) leads to:
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where (), is the elemental domain. Implementation of linear Lagrangian basis
functions and assembly of the elemental matrices yields a system of linear equa-
tions with tridiagonal structure that can be solved efficiently.

5 Results

Preliminary results are presented for the quarter annular harbor test prob-
lem as shown in Figure 1. The boundaries at r = n = 4x10m and 6 = 0, 7/2
are no-flow boundaries. The open boundary, located at r = ry = 1x10°m is
forced by an M, tide with frequency 1.405x10 */sec and amplitude 0.1m. The
horizontal grid contains 825 nodes and 1536 elements. The bottom of the harbor,
as shown in Figure 1, is quadratic in r and constant in 6 such that 4 = +2/H and
H = 1.6x10°m .

The vertical velocities are calculated using a range of different K values,
from K = 0 to K = 1x10 . The solutions are converged in the vertical. Two typi-
cal velocity profiles are shown in Figures 2 and 3. In all cases midrange values of
K more closely approximates the analytical solution [Muccino et al., 1997] than
does VDC (K = 0). As an example, in Figure 4, a mass conservation residual
(see Muccino et. al., 1997) is calculated over several tidal cycles for the single
element centered at r = 70, 800 m and z = —~13.7 m . The residual obtained for all
K is a sinusoidal wave with a period of 12.42 hours, the same period as the forc-
ing. The amplitude for K = 0 (VDC) and K = 1x10’ are however significantly
larger than that of K = 1.

A

r=4x10°m ry= 1x10°m

Figure 1. Section view of quarter annular harbor with opening at r = r,
(Ieft) and side view with quadratic bottom (right).
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Figure 2. Comparison of vertical velocity profiles for analytic, k = 0, k = 1,
and k = 1x10" for A = 9.206+9.206i and K = 2.836 at t = 11040sec .
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Figure 3. Comparison of vertical velocity profiles for analytic, k = 0, k = 1,
and k = 10 for A = 6.627+6.627i and K = 102.1 atr = 0 sec.
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Figure 4. Residual vs. tlme for analytic solution and K method with K = 0,
K=1and K = 1x10 at r = 70,800 m and z = -13.7 m.

¢ Conclusions

The K method has shown good point accuracy and good mass conservation prop-
erties in preliminary studies, for a large range of K values. There is a lower limit
in K for which the method is useful, i.e. when it essentially starts to converge to
the behavior of VDC, thatis K = 0. There also appears to be an upper limit on K,
above which the method gives less than optimal results. These findings are pre-
liminary and further testing of the method is required. The method is computa-
tionally efficient in that it only requires integration of the divergence vector,
assembly of a tridiagonal matrix, and the solution of the tridiagonal equation sys-
tem. In addition the K method offers strong improvement in point accuracy and
mass balance properties as well as convenient implementation in already existing
implementations of the VDC method. The K method solves the overdetermina-
tion problem within the framework of numerical approximations of differential
equations, which is conceptually simple and holds promise for many further
applications.
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7 Future Work

Some of the future work will include:
* more extensive application of the K method to test cases;
« application of the K method to a natural domain;

¢ determination of optimal K as a function of the parameters of the physical
simulation region;

« further applications of the addition of the continuity equation to derivative
models along the lines of G and K to enforce mass conservation - both from a
physical and mathematical viewpoint;

» a priori estimates of the mass conservation properties of the mass imbalance
control concept using analytical tools developed for the linear and non-linear
analysis of differential equations;

» and extension of the method to nonlinear problems.
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