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Abstract 

Nearly all mechanical systems involve rotating machinery (i.e., a motor or a 
generator), with gearboxes used to transmit power or/and change speed. 
Concerning vehicles, there is a specific nonlinear relationship between the size 
of the tires, linear velocity, engine RPM, gear ratio of the differential, and the 
gear ratio of the transmission. However, for each car there is a specific range of 
gear ratio of the transmission for each gear. On the other hand, the gear value is 
an indication of the driver behaviour and the road conditions, therefore it should 
be considered to establish non-pollutant driving guidelines. In this paper, two 
novel feed-forward artificial neural network (ANN) models have been developed 
and tested with the gear as the network output and the velocity of the engine 
(RPM) and the velocity of the car in (Km/h) as the network inputs. A lot of 
experiments were made using two commercial cars. The prediction efficiency of 
the proposed models is superior (i.e., the generalization mean square error is 
about 0.005). However after testing with two different vehicles, the conclusion is 
that on one hand the structure of the ANN model is suitable. On the other hand 
each vehicle has its specific model parameters. This paper shows that it is 
difficult to develop a universal model that predicts the gear based on the RPM 
and speed of any car.  
Keywords: feed-forward artificial neural networks, gear predictor, manual 
transmission. 

1 0BIntroduction 

The drivetrain system of the automobile engine consists of the following parts: 
engine, transmission, drive shaft, differential, and driven wheels. Firstly, the 
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transmission is a gear system that adjusts the ratio of engine speed or engine 
regime (RPM) to the vehicle speed. Mainly, it enables the engine to operate 
within its optimal performance range regardless of the vehicle speed. In a manual 
transmission, the driver selects the correct gear ratio from a set of possible gear 
ratios (usually five of six for modern passenger cars). For each gear, there is a 
specific gear ratio. But an automatic transmission selects this gear ratio by means 
of an automatic control system.  
     Secondly, the drive shaft is used on front-engine rear wheel drive vehicles to 
couple the transmission output shaft to the differential input shaft. However, in 
front wheel drive automobiles, a pair of drive shafts couples the transmission to 
the drive wheels through flexible joints known as constant velocity (CV) joints.  
     Thirdly, the differential has the following three purposes. The first is the right 
angle transfer of the rotary motion of the drive shaft to the wheels. The second is 
to allow each driven wheel to turn at a different speed, because the external 
wheel must turn faster than the internal wheel when the vehicle is turning a 
corner. The third is the torque increase provided by the gear ratio. The gear ratio 
also affects fuel economy. In front wheel drive cars, the transmission, 
differential, and drive shafts are known collectively as the transaxle assembly. 
The combination of drive shaft and differential completes the transfer of power 
from the engine to the rear wheels [1].   
     Finally, the car’s tires can almost be thought of as a third type of gearing. In 
other words, if the circumference of the tires is L, then for every complete 
revolution of the wheel, the car travels L meters. Eqn. (1) shows the formula 
relating the overall gear ratio (i.e., gear ratios of the transmission (grt) and 
differential (grd)), the size of the tires (Ct), the speed of the car (vc), and the 
engine speed (ve). The overall gear ratio gro is the product of grd and grt [2]. 
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     One of the challenges of the MIVECO research project, in which the authors 
are involved, is to establish a relationship between the driver behaviour and the 
road conditions with the non-pollutant driving guidelines. Consequently, the 
knowledge of the gear value and its relationship with the gases measurement is 
required. However, in most engine control systems it’s difficult to find a sensor 
for the transmission gear selector position.  
 

Artificial Neural Network Vehicle’s Gear
RPM

Velocity

 

Figure 1: Procedure used to test and train the ANN. 

     This paper proposes a novel artificial neural network (ANN) model to predict 
the overall gear ratio gro based on the engine RPM and the corresponding speed 
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of the car, see Figure 1. The model has been trained, validated, and tested with 
experimental tests using two commercial vehicles: Peugeot 205 and 405. 
     ANNs have been used widely in recent years in various fields such as 
finance [3], medicine [4], industry [5] and engineering [6, 7], due to their 
computational speed, their ability to handle complex non-linear functions and 
their robustness and great efficiency, even in cases where full information for the 
studied problems is absent. 

2 1BMethodology 

Figure 2 shows the process followed to evaluate the capability of a feedforward 
artificial neural network to predict the gear based on the corresponding velocity 
of the car and RPM of the engine. That procedure was applied to two different 
vehicles, as explained in the following sections. 
 

Measure the engine RPM and the car speed 

Deduce the corresponding gear

Train the neural network model using the training data set

Test the neural network model with the data of the same car

Normalize  and divide the entire data set into  training , 
validation, and testing data sets .

Test the neural network model with the data of the other car
 

Figure 2: Procedure used to test and train the ANN.  

2.1 First case of study: Peugeot 205 

The engine RPM and the car speed, shown in Figure 3, as well as the overall 
gear ratio gro were measured in different zones with different driving conditions. 
The instantaneous values of the gear were calculated where there is a specific 
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range of the overall gear ratio for each gear as illustrated in Table 1. The overall 
gear ratio, the corresponding gear signals, and the filtered gear signal are shown 
in Figure 4. The horizontal dashed lines in the graph of the overall gear ratio 
represent the boundaries of the ranges indicated in Table 1. The overall gear ratio 
and therefore the gear signal oscillates back and fourth around some boundaries 
in some areas marked by ellipses. Obviously, these oscillations in the gear signal 
happen in a very short time period which is impossible in reality. Consequently 
the gear signal was filtered in order to get rid of these repetitive changes. 

Table 1:  Ranges of gro with the corresponding gear. 

Range of the overall gear ratio (gro) 
From To Gear 

20 -- Neutral 
11,87628 20 First 
6,74544 11,87628 Second 
4,87968 6,74544 Third 
3,83916 4,87968 Fourth 
3,12156 3,83916 Fifth 

 

Figure 3: Engine RPM and car velocity of the PEUGEOT 205. 

2.2 6bSecond case of study: Peugeot 406 

In INSIA laboratories in Madrid, the engine RPM was measured during a test of 
the New European Driving Cycle (NEDC) on rolling roads. The NEDC consists  
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of four repeated ECE-15 driving cycles and an Extra-Urban driving cycle 
(EUDC). The EUDC and only one of the four ECE-15 driving cycles were used. 
Concerning the speed of the vehicle, the standard values were used. The gear 
signal was deduced using the clutch signal and the RPM signal. In other words, 
the gear change event is always synchronized with activating the clutch signal. 
On the other hand, if the gear changes from a low to a higher position, the RPM 
level is suddenly decreased. On the contrary, when the gear changes from a high 
to a lower position, the RPM level decreases smoothly. The instantaneous values 
of the RPM, reference velocity, clutch, and the deduced gear signals are plotted 
in Figure 5. 
 

 

Figure 4:  Overall gear ratio, gear, and filtered gear. 

2.3 Artificial neural network modelling 

Numerous neural networks are available for function approximation problems. A 
multilayer Perceptron MLP feedforward neural network trained with 
backpropagation was chosen to analyze the data because it has many properties 
useful for the vehicle gear prediction problem. It can efficiently learn large data 
sets. To obtain a good generalization, the entire data set was divided into training 
(60%), validation (20%), and testing (20%) groups. MLPs are more powerful 
than single layer networks because single layer networks are only able to solve 
linearly separable classification problems [11]. For example, a single-hidden 
layer feedforward network with a sufficiently large number of neurons can 
satisfy the "universal approximation" property [8, 12, 13, and 14]. A single-
hidden layer neural network (1-S-1), with S sigmoid neurons in the hidden layer 
and linear neurons in the output layer, can produce a response that is a 
superposition of S sigmoid functions [11]. Moreover, a single-hidden layer 
feedforward network with any bounded nonlinear transfer function with N-1 
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hidden neurons can represent any N input-target relations exactly (with zero 
error) [15, 16, 17, and 18]. However, a double-hidden layers network can 
represent any N input-target relations with a negligible small error using only 
(N/2) + 3 hidden neurons. This means that a network with 2 hidden layers is 
better than a network with one hidden layer in terms of number of training 
samples [15]. Consequently, in this paper both single and double hidden layer 
networks were used with sigmoid hidden neurons and linear output neurons.  
 

 

Figure 5: RPM, reference velocity, clutch, and the gear. 

     When a particular training algorithm fails on a MLP; it could be due to one of 
two reasons. The learning rule fails to converge to the proper values of the 
network parameters, perhaps due to unsuitable network initialization. Or the 
inability of the given network to implement the desired function, perhaps due to 
insufficient number of hidden neurons. To avoid the first possibility, the neural 
network models were trained and tested 10 times and the network with the 
lowest mean square error was chosen. Concerning the second possibility, there is 
no theory yet to tell you how many hidden neurons are needed to approximate 
any given function. In most situations, there is no way to determine the best 
number of hidden neurons without training several networks and estimating the 
generalization error of each.  
     However, the designer must put into consideration that the MLP with the 
minimum size is less likely to learn noise during the training phase; consequently 
generalizes better to unseen data. The methods to achieve this design objective 
are: network growing and network pruning. In network growing, we start with a 
small MLP, and then add a new hidden neuron or new hidden layer when we are 
unable to meet the design specifications. On the other hand, in network pruning, 
we start with a large MLP, and then prune it by eliminating certain weights in an 
orderly manner. If there were too few hidden neurons, high training error and 
high generalization error would result due to underfitting and high statistical 
bias. On the other hand, if there were too many hidden neurons, low training 
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error, but still have high generalization error, would result due to overfitting and 
high variance [7, 10, 11, and 13]. 

3 Results 

The mean square errors resulting from testing single and double feedforward 
neural networks with the data of the same vehicle are shown in Tables 2 and 3. 
The minimum size model architecture that met the design goal (about 0.005) for 
the PEUGEOT 205 and PEUGEOT 406 was 2-10-1 with 10 hidden neurons.  

Table 2:  MSE resulting from testing single hidden layer networks. 

Testing Mean Square Error (MSE) Number of Hidden 
Neurons PEUGEOT 205 PEUGEOT 406 
1 0.022929804113799 0.030737847949962 
2 0.008113754649602 0.013009639928021 
3 0.007150878530542 0.007953683727784 
 4  0.006916124765493 0.007533362116994 
5 0.006770174929462 0.007356262805218 
6 0.006801600634453 0.006821096479489 
7 0.007161435831671 0.006249000207199 
8 0.007262385239038 0.005906782786126 
9 0.006665429326786 0.005840597665814 
10 0.006486881856067 0.005527620454196 
11 0.006699752798641 0.004349509945806 
12 0.006961214546624 0.005195854106452 
13 0.006687424328677 0.004042310392445 
14 0.006733573608595 0.005189990010043 
15 0.006861530582299 0.003762549738464 

Table 3:  MSE resulting from testing double hidden layer networks. 

Number of hidden 
neurons Testing Mean Square Error (MSE) 

S1 S2 PEUGEOT 205 PEUGEOT 406 
1 1 0.021251738513978 0.029045230801033 
2 2 0.007897066497980 0.007546159875325 
3 3 0.007403216890455 0.007741855207261 
4 4 0.007136833232957 0.003671035573348 
5 5 0.007266126627429 0.002963149051319 
6 6 0.006853332450965 0.002682340983058 
7 7 0.006382907932383 0.002440590330384 
8 8 0.006284173922234 0.002303214429815 
9 9 0.006515939055022 0.002130067441743 
10 10 0.006873106767166 0.002144081137843 
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Figure 6: Testing results of the proposed model for P-205 9B. 

 

 

Figure 7: Testing results of the proposed model for P-406. 

44  Computational Methods and Experimental Measurements XIV

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 48,
 www.witpress.com, ISSN 1743-355X (on-line) 



     The proposed models showed satisfactory results when it was tested with the 
data of the same vehicle as can be shown in Figures 6 and 7. On the other hand, 
the models failed to predict the gear signal when they were tested with the data 
of the other vehicle. 

4 3BDiscussion 

The neural network models succeeded to predict the gear given only the 
corresponding engine RPM and car speed. Two structures models have been 
studied. Considering the value of 0.005 for the mean square error as a goal, it can 
be deduce that the simplest solution is the following structure model: only one 
hidden layer and 10 neurons per layer.  On the other hand the same neural 
network model failed to predict the gear signal when it was tested with the data 
of the other vehicle. This means that the parameters (weights and biases) of the 
model should be calculated for each vehicle. 

5 Conclusion 

An approach to predict the vehicle’s gear based on the engine regime (RPM) and 
the vehicle’s velocity (Km/h) using feedforward neural networks is presented. 
Two neural network models were evaluated for two different vehicles. The 
proposed ANN model structure is: only one hidden layer and 11 neurons [10 
hidden plus 1 out]. This model allows one an acceptable mean square error 
(about 0.005) to predict the gear of manual transmission vehicles. However, the 
calculated model parameters for a car cannot be extended to another vehicle; 
they should be checked for any different case.  
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