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Abstract 

The conjugated convection-conduction heat transfer problem has been solved for 
a package of fins used in the cooling of electronics. Both laminar and turbulent 
forced convection flows have been considered. Most of the results published 
previously have neglected conduction resistance. The solution procedure used in 
this paper is semi-analytic.  The conduction in the fins is assumed to be only in 
the direction normal to the fin base. The convective heat transfer is modelled 
assuming fully developed velocity profile in the laminar case and constant heat 
transfer coefficient in the turbulent case. The conduction in the fluid is neglected 
in directions parallel to fins. With the above-mentioned simplifications, partial 
differential equations can be Laplace transformed to obtain an ordinary 
differential equation. Finally, total heat flux can be achieved by inverse Laplace 
transforming a resulting series expansion. The results obtained in this paper can 
be used to obtain optimum plate spacing and corresponding heat flux for a given 
mass of fin material, pumping power and Prandtl number. The results are 
compared to existing results for isothermal fins.               
Keywords: conjugated heat transfer, electronics cooling, forced convection in 
channels, fin package, plate spacing, optimisation, fixed pumping power. 

1 Introduction 

The basic element in many electronics cooling applications is a rectangular fin 
package cooled by forced convection, shown in Figure 1. The most important 
issues for the designer are the optimal fin spacing and the corresponding 
obtained heat flux. These issues have been explored to some extent by many 
authors for isothermal or uniform heat flux plates, for example by Bejan and 
Sciubba [1], Mereu et al. [2] and Campo and Li [3]. 
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Figure 1: Schematic picture of the rectangular fin package. 

     However, if the amount of fin material is to be optimised, the fins can rarely 
be considered isothermal. Karvinen [4] has analysed conjugated convection-
conduction heat transfer in a single fin in free stream. The purpose of this paper 
is to provide the designer with fin package performance results when the fin 
efficiency is below 1. 
     The optimal fin spacing and especially the corresponding heat flux depend on 
the flow conditions. As stated by Mereu et al. [2], there are three typical flow 
conditions: fixed mass flow rate, fixed pressure drop and fixed pumping power. 
The emphasis in this paper is in the most realistic and the most difficult case of 
fixed pumping power. However, the methods presented in this paper can also be 
used to obtain results for the other flow conditions.  

2 Governing equations  

The fin half-thickness t is usually very small compared to the other fin 
dimensions L and l. Thus, the fin temperature can be assumed to be uniform in 
the z direction. Furthermore, the temperature gradient is assumed to possess a 
much larger component in y direction (normal to the fin base) than in x direction 
(parallel to flow), except near the leading edge [5]. For simplicity of analysis, 
only conduction in y direction is taken into account in the energy equation to 
yield 

),,(),(
2

2

yxq
y

yxTtks =
∂

∂
   (1) 

where q(x,y) is the heat flux from the fin to the fluid. In the turbulent case, the 
convective heat transfer coefficient may be assumed to be constant with only a 
slight error. The following simple correlation that is applicable for gases is used 
[6]. 

© 2005 WIT Press WIT Transactions on Modelling and Simulation, Vol 41,
 www.witpress.com, ISSN 1743-355X (on-line) 

738  Computational Methods and Experimental Measurements XII



( ) ( )mD
h

f
m TT

D
k

TThyxq
h

−=−= 8.05.0 RePr
021.0

),( . (2) 

     The result of eqn (2) is obtained assuming constant surface temperature, but 
may be used as an approximation for axially varying surface temperature. The 
laminar case is much more difficult because the heat transfer coefficient 
diminishes rapidly in streamwise direction and is dependent on the whole 
upstream fin temperature distribution. In this paper, analysis is simplified by 
assuming fully developed velocity distribution (large Prandtl number). 
Furthermore, conduction in the fluid is neglected in directions parallel to the fin. 
In other words, the solution to the Graetz problem with arbitrarily varying wall 
temperature is used to model q(x,y) [6]. Since b << l, the results for parallel 
plates can be used:  
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where x+=x/(2bReDhPr). The eigenvalues λn and the corresponding 
eigenfunctions Gn are given in Table (1). 

Table 1:  Graetz function eigenvalues and eigenfunctions. 

n λn Gn 
0 3.884 1.717 
1 13.09 1.139 
2 22.32 0.952 

>2 9.237n+3.849 2.68λn
-1/3 

 
     The assumption of fully developed velocity profile somewhat underestimates 
heat transfer, but the effect is relatively small for b << L even in the Prandtl 
number range of gases.  
     As we are mostly dealing with the case of fixed pumping power, a model for 
the pressure drop across the fin package is needed. In this paper, entrance and 
exit losses are neglected and the friction losses are calculated assuming fully 
developed flow [6]. The pressure drop is given by 

,
2

2

b
LV

c
p f ρ=∆                                         (4) 

where 

hD
fc

Re
24

= , laminar flow,                            (5) 

2.0Re023.02/ −= hDfc , turbulent flow, 3*104 < Re < 106.  (6) 
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The mass flow rate through the whole fin package is, for H >> (b+t), 
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An important parameter in the field of forced convection fin cooling is the non-
dimensional pumping power Φ, as defined by Mereu et al. [2]: 
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The definition of Φ has the advantage that it is relatively constant for a given fan 
(or pump) and fin package outer dimensions, varying only due to the fan 
efficiency dependence on the operating point. 

3 Solution for turbulent flow 

Using eqns (1) and (2), the governing differential equation and the boundary 
conditions for the fin temperature is 
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and for the fluid temperature 
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Using the non-dimensional variables X=x/L, Y=y/l, θ(x,y)=(T(x,y)-T0)/(Tb-T0), 
A=kstL/(ρcpbVl2), B=hL/(ρcpbV) and Laplace transforming eqns (9) and (10) 
with respect to X yields  
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where Θ(s,Y)=LX{θ} is the Laplace transformed non-dimensional fin 
temperature. Solving eqn (11) and using the boundary conditions results in 
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The fin temperature distribution T(x,y) could be found by inverse Laplace 
transforming Θ(s,Y) in eqn (12). However, the inversion can hardly be performed 
analytically. Luckily, in our application the exact temperature distribution is not 
desired, but rather the total heat flux transferred by the fin package. Since the 
total heat flux may be written as 
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and the partial fraction expansion for hyperbolic tangent [7] as 

,
4)12(

8)tanh(
0

222∑
∞

= ++
=

j xj
xx
π

                        (14) 

an analytical inverse Laplace transform may be found to yield 
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For isothermal fins (A=∞, B=NTU) eqn (13) reduces to the familiar form 
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4  Solution for laminar flow 

Using eqns (1) and (3), Laplace transforming with respect to x+ and using the 
same boundary conditions as in eqn (9) results in 
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and κ=kstb/(kfl2) is the non-dimensional fin conductivity. 
    As with turbulent flow, analytical inverse Laplace transforming Θ(s,Y) is 
hardly possible and actually not necessary. Using eqns (13) and (14), the total 
heat flux transferred by the fin package may be written as 
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No closed-form inverse Laplace transform for the expression in eqn (19) is 
known to the authors. However, the solution is possible if both of the infinite 
summations are truncated and approximated by a finite number of terms.  
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For a large number of terms, the inverse Laplace transform in eqn (20) is very 
complicated but may be found with any standard symbolic mathematics software 
for a given non-dimensional fin conductivity κ, the number of Graetz function 
eigenvalues N and the number of hyperbolic tangent partial fraction expansion 
terms J. 

5 Optimal plate spacing and corresponding heat flux 

The results obtained for total heat fluxes for turbulent flow (as a function of A 
and B) and laminar flow (as a function of x+ and κ) have a certain value of their 
own. In practice, however, one is often interested in the optimal plate spacing 
and the corresponding heat flux as functions of non-dimensional pumping power 
Φ and non-dimensional fin mass K=kstL2/(kfbl2). Approximate results for 
isothermal fins (K=∞) have been previously obtained with the method of 
intersecting asymptotes [2]. The results were developed for laminar flow, but 
they can be generalised to be applicable for both laminar and turbulent flows 
using different constants for different types of flows. The results for the method 
of intersecting asymptotes are 
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where the constants C1, C2, α, β, χ, λ and γ are different for laminar and 
turbulent flows and are tabulated in Table (2). 

Table 2:  Constants in eqns (21) and (22). 

 C1 C2 α β χ λ γ 
Turbulent 0.0352 1.0126 7/20 1/16 17/20 37/112 75/112 
Laminar 1.1311 0.6530 10/27 1/6 17/27 1/3 2/3 

 
     In this paper, we are interested in the non-isothermal case. Using the friction 
loss model of eqns. (4)-(6), the mass flow equation (7) and the definition of Φ in 
eqn (8), the total heat flux results of eqns (15) and (20) can easily be written as 
functions of Φ, K, Pr, t/b and b/L: 
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where the constants a, b and c are different for laminar and turbulent flow and 
are tabulated in Table (3). The non-dimensional total heat flux function ε has a 
unique maximum with respect to b/L, although its analytical determination is not 
possible. However, it is rather straightforward to determine the maximum and 
the corresponding total heat fluxes numerically for any value of the latter 
argument of the function ε in eqn (23). In other words, the optimal b/L may be 
found numerically for any set of Φ, K, Pr and t/b, all of which are assumed to be 
known before the optimisation. Any standard numerical maximisation method, 
such as the Gauss-Newton algorithm, can be used since the function ε has only a 
single extremum. 
     After neglecting streamwise conduction in the fin and normal-to-plate 
velocity in the fluid, it cannot be claimed that the method described above would 
give more accurate results than eqn (21), or would at least be worth the expense. 
However, in the fixed pumping power case, which we are mainly dealing with, 
the total heat flux is relatively constant in the vicinity of the maximum. Thus, 
eqn (21) is quite satisfactory. 
     While the dependence of the total heat flux on b/L is relatively small, the 
contrary is true of its dependence on Φ or K. As noted previously, the 
assumptions of fully developed velocity profile and negligible conduction in 
streamwise direction somewhat underestimate the total heat flux. Thus, eqn (23) 
gives the lower limit of the heat flux as eqn (22) gives the upper limit. The real 
heat flux is expected to be much closer to the lower limit, especially for small K.  

Table 3:  Constants in eqns (23), (24) and (25). 

 a b c C3 C4 
Turbulent 5/6 7/18 1/18 0.0200 0.6765 
Laminar 2/3 1/3 1/6 1.2319 0.5941 

6 Results 

The optimal plate spacing b/L was found numerically for several combinations of 
Φ, K, Pr and t/b. The optimisation was performed using the Gauss-Newton 
algorithm. In the turbulent case, the infinite summation in eqn (15) was 
approximated by 2000 terms. The computational effort increased linearly with 
respect to the number of terms used. 
     In the laminar case, the numbers of summation terms in eqn (20) were J=200 
and N=8. The computational effort increased linearly with J but approximately 
as exp(0.6*N) with N. Increasing the number of terms from these values was 
shown to have negligible effect on the results.  
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    As suggested by eqn (23), the optimal plate spacing can be presented by a 
single curve when suitable non-dimensional parameters are used. The results are 
shown in Figure 2 for both turbulent and laminar flow. It is seen that in both 
turbulent and laminar cases the optimal plate spacing behaves irregularly as a 
function of K. However, the optimal plate spacing is nearly constant, being only 
slightly below the isothermal value.  
     Taking into account the approximations introduced in the current analysis, it 
does not seem reasonable for the designer to use the results in Figure (2). 
Instead, the easily usable isothermal limit of the current results is recommended: 
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where the constants b, c and C3 are given in Table (3). In the majority of cases 
eqn (24) gives results of the same order of magnitude as eqn (21), which was 
obtained with the method of intersecting asymptotes. 
    More interesting are the maximum total heat flux results that were obtained 
with the numerical optimisation procedure. In the isothermal case (K=∞), the 
maximum heat flux was found to be given by the equation 

,
Pr

1
4

3
1

3
2

max,

C
TlHk

b
tLQ

a
f

isot

=
Φ∆







 +

   (25) 

Figure 2: Optimal plate spacing ratio to isothermal optimum as a function of 
non-dimensional fin mass. 
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where the constants a and C4 are given in Table (3). Due to its asymptotic nature, 
eqn (22) gives considerably larger heat fluxes than eqn (25). The numerically 
computed fin efficiencies in the optimal conditions are shown in Figure 3 as 
functions of the non-dimensional fin mass. Another way to achieve the 
approximate fin efficiencies is to assume a constant heat transfer coefficient with 
respect to the ambient temperature. The mean heat transfer coefficient is 
obtained from eqn (25): 
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Figure 3: Fin efficiency as a function of non-dimensional fin 
mass. 

     Following with the conventional fin theory, the fin efficiency can be written 
as  
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Eqn (27) gives fin efficiencies somewhat below those shown in Figure 3, but the 
difference is not greater than 5 %. 

7 Conclusions 

Analytical solutions for both turbulent and laminar conjugated heat transfer in a 
package of fins were obtained. As an application, the results were used to 
optimise the plate spacing in the realistic case of fixed pumping power. The 
results obtained for the maximum total heat transfer rates can be very useful in 
the design process of a rectangular fin heat exchanger. Also analytical expres-
sions for the optimal plate spacing and the corresponding heat flux were 
obtained. It was shown that the analytical expressions provide results very close 
to those obtained with numerical optimisation procedure. 
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