@ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

A practical parallel retrofit of a
3-dimensional surface water model
M.J. Eppstein,® J.P. Laible®

¢ Department of Computer Science and Electrical
Engineering, * Department of Civil and Environmental
Engineering, University of Vermont, Burlington,

Vermont 05405, USA

1 Abstract

Laible [2] has implemented a sequential Fortran-77 code for a 3-dimensional
surface water flow model. The model uses the Galerkin Finite Element
Method (FEM) with triangular elements and linear basis functions to solve
the vertically integrated wave formulation of the shallow water equations
for surface water elevations in the 2-d horizontal domain. The full 3-
dimensional velocity field is subsequently solved for by the Galerkin FEM
along the 3rd (vertical) dimension using 1-dimensional linear elements at
each of the nodes in the 2-D horizontal mesh. The inclusion of a baroclinic
term enables simulation of the internal seiche that develops in lakes under
stratified conditions.

In this study, the existing code was parallelized using PVM Version 3.2.6
[5, 6]. A major goal of this parallel retrofit was to explore a heterogeneous
programming paradigm that could be quickly and easily applied to complex
existing codes, while still yielding useful speedups. Suboptimal parallelism,
including a serial bottleneck and a high frequency of message passing, was
deliberately accepted in order to minimize changes to existing code. While
more efficient parallel algorithms are appropriate when writing new codes,
they are seldom applied to the vast quantity of existing codes due to the need
to rewrite major portions of the code. We demonstrate that useful speedups
can be achieved with minimal programming effort, if optimal parallelism is
sacrificed for the sake of simplicity of the port.

@ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

56 Computer Modelling of Seas and Coastal Regions

2 Introduction

Lakes, oceans, and estuaries are often modeled by a special form of the gen-
eral Navier-Stokes equations of fluid dynamics. The special form is obtained
by making several simplifying assumptions that realistically represent the
true nature of the physical setting. The most fundamental of these is that
the body of water is many times greater in horizontal extent than the depth.
When this is the case, the general three dimensional equations can be rep-
resented by differential equations that can be solved sequentially for the
unknown field variables. This is accomplished by discretizing the domain
into a horizontal finite element mesh in the X-Y plane, with the Z-dimension
further discretized into a 1-D “stretched” grid of a fixed number of verti-
cal nodes at each node in the X-Y grid. The equations that emerge (=
associated matrix approximations) are as follows.

The wave equation (1). This equation is used to solve for the surface
elevation () and typically involves a finite element discretization over the
horizontal (X-Y plane) surface of the water body.

Bt %~ Vo (95 HY L+ M, — 7, HV) =0

K (¢ = {Po) o

7, = penalty parameter , g = gravity , H = total depth = h 4+ (
t =time , h = mwl depth , p; = surface density , p = % ffhp dz

. U -
V:{v}’ U=4fSude, V=4[uds, Vo= (22)

The vertically dependent momentum (2) and continuity (3) equations.
The momentum equations are used to solve for the horizontal velocities u, v
in the z(east) and y(north) directions respectively. Subsequently, the conti-
nuity equation is used to solve for the vertical velocities w. These unknowns
are defined on a vertical string of nodes in the Z-dimension located at each
of the horizontal nodes in the X-Y plane. At any horizontal location the ver-
tically averaged velocities (U, V') can then be found by a vertical averaging
of u and v.

€ R TR ST) SRS
(6%%)surface =T, (6—33_‘})bottom =T

V. = complez velocity =u+iv, i =+/—1
A= f1, f=Coriolis Parameter
e = vertical eddy viscosity , t = time
7_:3 = Tep + iTsy 5 7:‘3 = Tpe + iny

@ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

Computer Modelling of Seas and Coastal Regions 57

Ju Ov Ow
G+ G =0 = [Kul {0} = (Pu) (3

The density transport equation (4) When the water body has a variable
density structure, this equation must be solved for the density structure (p)
at any horizontal location and at each vertical node.

%-&-u%%—vg—z—i—wgzo = [K,]{p} = {Pp} (4)

The terms M, and f. involve functions, derivatives and integrals of the
unknowns u,v,w, p, U,V and (. All derivatives and integrals are evaluated
numerically using the values at the discrete nodes. For a more complete
discussion of the model see [2].

The bulk of the computational effort is expended in the formulation and
solution of the equations for the Z-dimension (equations (2),(3),and (4)).
Given that these are completely uncoupled in the horizontal dimension, a
parallel implementation was attractive.

The serial version of the code was previously verified on standard test
problems and applied to a Lake Champlain model [2].

3 Parallel Implementation using PVM

A combinaton of programming paradigms was employed in the parallel im-
plementation of the model. Functional parallelization was used to overlap
output with computation, the Single Program Multiple Data (SPMD) ap-
proach was used to parallelize the bulk of the computations in the simu-
lation, and serial code was retained for the solution of the highly coupled
horizontal system of equations. In some cases, the same computations are
performed redundantly by all SPMD processes. The overriding goal of the
parallelization was to achieve as much parallelization as possible without
rewriting any of the existing code. PVM 3.2.6 was used to provide explicit
message passing between processes in order to maintain sequential consis-
tency [3] of the code.

In the PVM version, the user initiates execution of one copy of the SPMD
process, known as the “parent” process. The parent then spawns multiple
copies of the same process and each process is assigned a mutually exclusive
set of contiguous nodes in the domain, known as a “subdomain”. The code
for each SPMD process is a (slightly modified) copy of the original serial
code. The process with the most nodes in its subdomain is designated as the
“solver” process. One new subroutine was written to create the processes
and send them a startup message, and another new subroutine was created
for the determination of subdomains by each process. Subdomain bound-
aries are specified via a short data file constructed by the user and need

@ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

58 Computer Modelling of Seas and Coastal Regions

not be equally sized, so that heterogeneity in computing components may
be used to advantage. For the determination of speedups, subdomains were
kept roughly equal in size and were allocated to homogeneous processors.

This implementation requires that nodes and elements in the horizontal
mesh be renumbered so that subdomains have contiguously numbered nodes
and elements. For greatest efficiency, numbering should be transverse to the
longest axis of the domain, as this allows subdomains to be cut along the
shortest dimension of the domain thereby minimizing the number of nodes
adjacent to each subdomain (and hence minimizing the size of the messages
that must be passed between adjacent subdomains). No attempt has been
made at this point to automate determination of subdomain boundaries,
although this could be done if desired.

Each parallel SPMD process executes the initialization segment of the
code (i.e. before the timestep loop) ezactly as was done in the serial code.
The data structures are constructed by each SPMD process for the entire
domain, with each process reading a copy of the data files from the local
disk of the processor on which it is running. This approach ensures that
each process starts out with the correct data and requires no modifications
to the initialization code, while minimizing disk contention during file ac-
cess when running in a distributed disk environment, such as on a cluster
of workstations. Although no speedup is possible during this portion of the
program, the one-time cost associated with it is inconsequential in compar-
ison to the time requirements of the timestep loop when executed over any
realistic number of timesteps.

The real opportunities for speedup lie in the parallelization of the code
within the timestep loop. In the existing 3-D surface water model, the
bulk of the computational effort is expended in the calculation of the 3-
D velocity and density fields. The equations to solve for the velocities
and densities at each vertical string of nodes in the third dimension are
highly nonlinear. The required coefficient matrices [K,], [K,], and [K,] must
be recalculated each timestep. However, by virtue of the computational
algorithm, these equations are completely uncoupled in the horizontal mesh,
enabling maximal parallelism between each vertical string of nodes in the
2-D mesh.

The highly coupled nature of the data access required in the 2-D direct
solver for surface elevations makes it difficult to parallelize this step without
completely replacing the direct solver with a domain-decomposition algo-
rithm (such as described by [4]). Domain-decomposition solvers come with
computational costs of their own due to the iterative nature, whereas the
symmetric, positive definate nature of the coefficient matrix [K,] makes
direct (non-iterative) solution of the equations relatively fast.

In this PVM implementation, a practical approach to parallelism was
taken, whereby the relatively fast 2-D horizontal direct solver for surface
elevations was allowed to remain as a serial bottleneck, performed by the

@ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

Computer Modelling of Seas and Coastal Regions 59

SPMD process with the largest subdomain. All nonlinear terms are embed-
ded in the right-hand side { P, }, so that the coefficient matrix [K] contains
only linear terms and is calculated only once (before the timestep loop).
Hence, only one vector {F;} must be gathered from the other SPMD pro-
cesses, and only one vector {{} must be scattered back to the other SPMD
processes, before and after the serial solution for surface elevations. Two
new subroutines were created to modularize the code associated with the
gather and the scatter, respectively.

All remaining computations were performed in parallel by having each
SPMD process restrict its computations to the nodes and elements in its
local subdomain. This was effected by a simple change in loop bounds
within any subroutines called from inside the timestep loop.

Since several of the computations require access to data from nearest
neighbor nodes in the 2-D horizontal mesh, data for subdomain boundaries
was explicitly passed as a 1-D array or 2-D array via PVM between processes
of adjacent subdomains whenever changes to required variables occurred.
The first dimension of the arrays that must be passed is determined by the
number of nodes on the subdomain boundaries, and varies between SPMD
processes. The second dimension is determined by whether or not the data
at each node in the 2-D mesh extends into the vertical dimension; this di-
mension is constant for all SPMD processes, since the number of nodes in
the vertical stretched grid is fixed. Two subroutines were added to modular-
ize the necessary PVM code associated with passing a single 1-D array or a
single 2-D array, respectively. A total of 26 calls to the 1-D message passer
and 14 calls to the 2-D message passer were inserted into the timestep loop
of the original code, in between subroutines that changed required variables.
Although less frequent message passing could have been achieved by reor-
ganizing some of the computations and by packing more than one array
into each message, such reorganization was deliberately avoided in order to
minimize programming effort.

In addition to the SPMD parallel processes, a distinct output process
was utilized to perform all disk output, thus removing the output bottle-
neck which can hold up computation. The output process is identical to
the SPMD processes, except that the body of the timestep loop has been
removed and replaced by a call to a new subroutine that receives data to
be output from each of the SPMD processes, then loads them into the data
structures for the entire domain. The original output routine is subsequently
called to perform the actual disk output. In place of the call to the original
output subroutine, each SPMD process now calls a new subroutine that
sends the data to be output from its local subdomain to the output process,
and then continues with its computation of the next timestep.

Programming effort in the parallel port was thus very minimal. Eight
new subroutines were created to package up all low-level calls to PVM
message-passing and control routines: 1) spawn processes, 2) determine

@ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

60 Computer Modelling of Seas and Coastal Regions

subdomains, 3) share a 1-D array of values with adjacent subdomains, 4)
share a 2-D array of values with adjacent subdomains, 5) gather a vector
from the other SPMD processes into the solver process, 6) scatter a vector
from the solver back to the other SPMD processes, 7) Send output data to
the output process, and 8) receive output data from the SPMD processes
into the output process. Calls to these eight new subroutines were inserted
into the mainline of the original code in between existing subroutine calls.
The only significant change required to the existing code was the alteration
of loop bounds within subroutines called from inside the timestep loop, in
order to limit computations to the contiguous nodes and elements in the
subdomain of each process. In addition, the call to output data was replaced
by a call to send data to the output process.

4 Description of Timing Studies

Timings were performed on the PVM implementation as applied to a model
of Lake Champlain. The domain was horizontally discretized into 627 nodes
and 991 elements, and vertically discretized into a streched grid of 11 nodes
(10 elements).

Timings were performed on the timestep loop run for 10 timesteps with
output performed after timesteps 5 and 10. All timings were performed
via calls to the C routine gettimeofday, which was linked to the Fortran-
77 program. This wall-clock timer is necessitated in order to get fair and
meaningful times of the PVM version, which must include message-passing
delays which would be excluded in a CPU-clock timer.

In order to achieve meaningful speedups, timings were performed when
both network and machine traffic were low, and were limited to two homo-
geneous PVM configurations: 1) nine 12 MHz SGI Iris Workstations on the
same subnet, and 2) one 8-processor SGI 8D with four 32 MHz processors
and four 40 MHz processors. No explicit control was exercised in placing
separate processes onto separate processors on the multiprocessor.

Experiments were run with 1, 2, and 4 SPMD processes with and with-
out a separate output process on both PVM configurations. Additionally,
experiments with 8 SPMD processes with and without a separate output
process (thus requiring a maximum of 9 processors, which exceeded the
number available on the multiprocessor) were run on the workstation clus-
ter. In all cases, subdomains were kept approximately uniformly sized. In
cases where no separate output process was utilized, the solver process per-
formed all disk output, so that the importance of the functional parallelism
of the output process could be assessed.

Five replications of each timing experiment were performed. Low vari-
ability in the timings validates the assumption of low- load conditions (stan-
dard deviations of all experiments were less than 3 seconds for 10 timesteps).

S@_ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

Computer Modelling of Seas and Coastal Regions 61

w

SGI Workstation Cluster

~—-—-— SGI multiprocessor]
@ separate output process
0O output by solver process

N
[4)]

N

Speed-Up (Relative to 1 subdomain)
o

3 4 5 6 7 8
Number of Subdomains

Figure 1: Min-based speedups for each PVM configuration with the Lake
Champlain domain.

As discussed in [1], the minimum of each of the five replications was used
in analysis of the results of the timings. The use of minimum timings taken
during low-load conditions provides a consistent basis for comparison of
parallel processes in a network-based distributed computing environment,
and estimates an upper bound on performance.

5 Results and Discussion of Timing Studies

On both configurations, run time decreased monotonically as the number
of subdomains (owned by separate SPMD processes running on separate
processors) increased from 1 to 4 or 8. Interestingly, for both PVM configu-
rations, the functional parallelization of disk output by the separate output
process actually increased run times slightly when only one subdomain was
used, but decreased run times increasingly as more subdomains were used.
Presumably, the increase in run times with a separate output process and
one subdomain is caused by the large overhead of passing the entire domain
to the output process via PVM message-passing, outweighing the advantage
of having the disk output done in parallel with subsequent computations.
As the number of subdomains increases, the size of the subdomains (and
hence the size of the output message each subdomain must send) decreases,
and the functional parallelism of the output process becomes increasingly
advantageous (figure 1).

@ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

62 Computer Modelling of Seas and Coastal Regions

Speedups were calculated relative to one subdomain, regardless of whether
the output process was separated or not, and are shown in Figure 1. (Higher
speedups were attained with the workstation cluster than with the multipro-
cessor because the communication to computation ratio is lower with slower
processors.) A maximum speedup of 2.8 was achieved with 8 subdomains
on the workstation cluster, while a maximum speedup of 2.1 was acheived
with 4 subdomains on the multiprocessor. In both configurations, speedups
were improved by the addition of the separate output process, especially for
larger numbers of subdomains. For the 8 subdomains on the workstation
cluster, the use of the separate output process improved speedup by 40%.

The speedups observed are less than linear and appear to have asymp-
totic behavior. Such asymptotic behavior is expected, since this PVM im-
plementation has a serial bottleneck for the solution of the surface water
elevations. The bottleneck limits the maximum attainable speedup and be-
comes increasingly dominant as the number of subdomains is increased. In
order to remove this bottleneck, one could replace the solver by a domain
decomposition algorithm, such as described in [4]. Previous studies [1] have
shown that nearly linear speedup can be achieved with PVM through such
an approach. However, an iterative solver is inherantly slower than a direct
solver, and hence the attainment of better speedups may not be indicative
of faster code.

Despite the low efficiency of adding processes, use of this PVM imple-
mentation can still reduce run times sufficiently to be useful in running
long simulations that typically take many hours or days to complete. In
a computing environment where there is a large amount of idle CPU time
available on many machines, such as at the University of Vermont, efficiency
is of little relevance. On the other hand, cutting down simulation time by
a factor of 2-3 ¢s significant and useful, enabling larger arid more detailed
simulations to be performed during low-load times, such as overnight, and
may lower the probability that the simulation will be aborted due to an
unexpected machine shut-down.

6 Summary and Conclusions

The PVM software system was used to successfully parallelize the majority
of a complex 3-dimensional surface water flow model with minimal repro-
gramming (about 3 days effort). A combination of SPMD, functional par-
allelism and serial programming paradigms was employed. Despite a serial
bottleneck and a high-frequency of message-passing, useful speedups were
attained.

Although parallelism could undoubtedly be increased by redesigning and
reprogramming parts of the original code, the programming effort that
would be required would be significant. Many existing complex scientific

@ Transactions on the Built Environment vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

Computer Modelling of Seas and Coastal Regions

codes remain serial because of the deterrant effect of the reprogramming
effort often associated with parallelization. In this study, we have demon-

strated that a simpler approach to parallel retrofits can yield useful speedups
at virtually no cost, if expectations of computational efficiency of paralleliza-

tion are relaxed.

7 Acknowledgements

M.J.E.’s participation in this project was made possible in part by a grant

from the AAUW Educational Foundation.

References

[1] Eppstein, M.J. and Dougherty, D.E. “A Comparative Study of PVM
Workstation Cluster Implementations of a Two-Phase Subsurface Flow

Model”, Advances in Water Resources, 17:181-195, 1994.

[2] Laible, J.P. “On the Solution of the Three Dimensional Shallow Water
Equations Using the Wave Equation Formulation” in Computational
Methods in Water Resources IX. Vol. 2: Mathematical Modeling in
Water Resources, (Ed. Russell, T. F., et al.), pp. 545-552, Proceed-
ings of the Ninth International Conference on Computational Methods
in Water Resources, Denver, 1992. Computational Mechanics Publica-

tions, Southampton and Elsevier Applied Science, London, 1992.

[3] Lamport, Leslie. “How to Make a Multiprocessor Computer That Cor-
rectly Executes Multiprocess Programs”, IEFE Transactions on Com-

puters, C-28(9):690-691, 1979.

[4] Marini, L. D., and Quarteroni, A. “A Relaxation Procedure for Do-
main Decomposition Methods Using Finite Elements”, Numer. Math.,

55:575-598, 1989.

[5] PVM Version 3 source code and documentation may be obtained via
email to netlib@ornl.gov with the subject message send index from

pvm3.

[6] Sunderam, V. S. “PVM: A Framework for Parallel Distributed Com-

puting”, Concurrency Practice and Ezperience, 2(4):315, 1990.

