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Abstract
This paper presents the application of the radial basis functions (RBF) for
solving a set of non-linear hydrodynamics model for marine environments.
Two different techniques, namely compact support and multizone decom-
position, are used to improve the conditioning of the resultant coefficient
matrix which is a full matrix due to the use of the global radial basis func-
tions. The idea of the compactly supported radial basis function (CSRBF)
is to reduce the full matrix to a banded sparse matrix. The multizone
approach is similar to the commonly used domain decomposition. The re-
sulting sparse or smaller matrix has shown to improve in both stability
and computational efficiency. Both techniques are verified by comparing
with the global multiquadric radial basis function applied to a linear and
a real non-linear two-dimensional hydrodynamic model in simulating the
tidal current and water flow circulation patterns.

1 Introduction

The present study aims to simulate the spatial and temporal variation of
tidal currents and water velocities in marine environments. Water qual-
ity monitoring programs are often limited in their extend of coverage both
spatially and temporally. In light of the complicated interaction between
the hydrological and physical processes, mathematical modellings which are
commonly used to cope with complicated systems are considered to be prac-
tically valid for the prediction of future events. The application of Multi-
quadric (MQ) scheme for simulating water pollutants was found to be better
in terms of numerical accuracy and rate of convergence than that of the fi-
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356 Boundary Element Technology

nite element scheme [1]. However MQ is a globally supported function and
will generate a system of equations with a full coefficient matrix. Solving
problems with full coefficient matrix is extremely expensive when the num-
ber of interpolation points reaches several hundreds. It will also result in
instability and ill-conditioning.

To improve the forementioned problems, we propose to use compact
support and multizone decomposition to work together with RBFs. The
multizone approach is similar to domain decomposition which subdivide the
whole domain into a number of non-overlapping finite zones. The resulting
matrix for the computation of each local zone contains a much smaller
number of data points. The compact support approach enables the RBFs
scheme to generate banded sparse matrices.

Section 2 gives the description of the hydrodynamic equations. Sec-
tion 3 introduces the application of RBFs with compact support and mul-
tizone decomposition. Numerical and computational results are presented
in Section 4. The paper concludes with a discussion in Section 5.

2 Hydrodynamics Model for Fluid Velocities

The governing equations are the 2-dimensional depth-integrated version of
three differential equations, namely the continuity equation and the mo-
mentum conservation equations in the x and y directions respectively in a
region D. These equations are expressed in vector notation as:

*U«* + ": + « = 0, inncH* (2.1)dt dx dy
where 4>, G, F, E are column vectors given as below

uH I r vH
G = \ u? F = \ uv

E =

where u,v are the depth-averaged advective velocities in x,y directions re-
spectively; C is the sea water surface elevation; h is the mean depth of sea
level; H is the total depth of sea level, such that H — h + £; Wx,Wy are
the wind velocity components in x,y directions respectively, and Wg is the

wind speed given as Wg — w% + Wg . C& is the Chezy bed roughness

coefficient; / is the coriolis force parameter; g is the gravitational accelera-
tion; pa is the density of air; p^ is the density of water and C§ is the surface
friction coefficient.

The water boundary condition is defined as ((%, %/, t) — (*(%, %/, £), where
£*(x,t/,t) is the specific sea surface elevation level on the water boundary.
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Boundary Element Technology 357

The land boundary condition is defined as Q • n = 0, where Q represents
the velocity vector (%,%), n is the direction of the outward normal vector
on the land boundary. At the n^ time step, the current velocities (ii™,i>™)
on the land boundary are derived from this condition as

(̂̂ ,i/i) = ̂ (̂ ,%/;)sin̂ (̂ )-̂ (a;i,i/i)sin(̂ )co8%)

(̂̂ ,i/i) = ̂(̂ ,?/i)coŝ (̂ )-̂ (̂ ,̂ )sin%)cos(̂ ) (2.2)

where u™(xi,yi) and v™(xi,yi) are the n time step values computed at data
point (xi^yi) on the land boundary from the given interpolant, 9i is the
outward normal angles at the land boundary points which are computed by
taking the average of the vectors joining the neighbouring points.

The initial conditions are <2(x;,2/i,0) = 0, ("(%;, %A,0) = 0, for all (#;, %/%)
e n.

3 Radial Basis Functions

The theory of the RBF approximation have been discussed comprehensively
in [3]. The principle idea of the radial basis interpolation is to interpolate
a finite series of an unknown function f(X) at N distinct points Xj on 0
by the following expansion

TV
/(X)-]Tâ (||X-Xj ||), (3.3)

j = i
where 0(|| X — Xj ||) is a radial basis function, Xj G Jtt", j = 1, 2, . . . , TV,
|| X — Xj || = TJ is the Euclidean distance, and a/s are the unknown
coefficients to be calculated. The most popular RBFs are Multiquadric
(r'j -f c^)i/2, thin plate spline r^logrj, and Gaussian e~̂ ' where c ̂  0.
These functions are globally supported.

To solve the two-dimensional time-dependent differential equations given
in equations (2.1), it is integrated in time using explicit forward difference
scheme given as

+'=
=*?- ite- +i*-+

where At is the time step, <&^ is the solution vector at the points (%;,%/;)
in time nAt. The values of the interpolant 3>™ are given by the following
radial basis function

which are collocating with a set of data points (x^yO^Li over the domain
O C P? . This equation forms a system of N linear equations in TV unknowns
which can be expressed in matrix form

Acl = 3>, (3.6)

where A = [<t>j(xi, y»)] is a TV x TV coefficient matrix; a = [â ] and # = [4>?]
are TV x 1 matrices. The unknown coefficients vector [a"] can be determined
using Gaussian elimination.
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358 Boundary Element Technology

It follows that the numerical values for the corresponding spatial deriva-

tives &£ and dy can be calculated using equation (3.5). The
solution of the variables ((, u, v] is solved by substituting the partial deriva-
tives into the equation (3.4) with the given boundary conditions.

Compact support and multizone decomposition techniques are intro-
duced here to make the RBF approximation more feasible for the solving
large scale problems. The algorithm of these two schemes gives a chance to
reduce the computational time and improve the stability of the computation
by the reduction of the size of the coefficient matrix to be solved.

3.1 Compactly Supported Radial Basis Functions

Compactly supported radial basis functions (CSRBF) was firstly introduced
by Wu [5] and later expanded by Wendland [4] in the mid 1990s. Floater
and Iske [6] first adopted the CSRBFs for multi-step scattered data interpo-
lation. Fasshauer [7, 8] then introduced a multilevel approximation scheme
incorporated with CSRBF for the solution of boundary value problems and
linear partial differential equations.

The principle idea of CSRBFs is to use a polynomial as a function of
Euclidean distance r with support on [0, 1]. CSRBFs must be strictly pos-
itive definite in R<* for all d less than or equal to some fixed value do- The
basic definition of the CSRBF </>/,& (r) have the form

with the following conditions

if 0 < r < 1;
if r > 1 ,

where / is the dimension number, 2k is the smoothness of the function,
r =|| X - Xj || is the Euclidean distance, Xj G R*, j = 1, 2,..., N, p(r) is
the prescribed polynomial.

Wendland's CSRBFs is adopted to replace the global basis function.
For small number of k — 0,1,2,3, Wendland's CSRBFs can be formulated
explicitly in the form

<̂ ,i(r) = (1 -r)i+* [(£ + l)r -f 1], (3.9)

" +(31 + 6)r + 3], (3.10)

+ 15)r-3 (3.11)
' 4- 36/ 4- 45)r2 + (15; + 45)7. + 15)].

For any given dimension d, the value / can be determined by[~J-i-fc-fl.
For instant, when d = 3, the Wendland's function in C°, C\ C* and C^
can be expressed respectively in the following polynomials form

4»2,o(r) = (l-r)%., (3.12)
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Boundary Element Technology 359

(3.13)

3), (3.14)

8r4-l), (3.15)
These functions have compact support on [0, 1] and vanish on [1, oo]. We
can scale a basis function with compact support on [0, 6} by replacing r
with | where 6 > 0. With a scaling factor 6 the interpolation function 3>™
in the equation (3.5) is written as

(3.16)

where r — [(xi - Xj)̂  -f (yi - 2/j)̂ ]*'̂ , $j can be variable or constant for
different node points depends on the nature of the problem. An important
unsolved problem is to find a method to determine the optimal size of 6.
In general, the smaller the value of 6, the higher percentage of zero entries.
However, this would also be resulted in lower accuracy.

3.2 RBFs with Multizone Decomposition

Under the multi-zone decomposition scheme described in [2], the domain H
is divided into K zones W', j ~ 1,2,..., K, hence the global set of interpola-
tion points W is also divided into K subsets of data points W^, j — 1,..., K
such that W* fl W* — 0, for i ̂  j and |Ji=i ̂  — W.

For the zone fi* we denote the set of data points in it by W* — (Pf \ j —

1,2,..., LA;} where L^ is the number of data point in subset W^. Each
subset W^ is assigned with approximately the same number of data points
for an efficient load balancing computation.

In order to enhance the accuracy of computation of each zone and to
maintain continuity of the interpolation function across the zones' bound-
aries, two more sets of extra data points will be put together with the
data points in W^. The first set includes all the points which are in other
zones and adjacent to the boundary of ffc* and is denoted as B^ — {P^ €
W*\l ^ k and j = L* + 1, L* + 2,..., L* + M&,}, where M& is the to-
tal number of data points considered to be close to the boundary of &
and is relatively smaller than L&. The second set of data points which
are chosen at random such that they are sparsely and evenly distributed
over the other zones in H. We denote this set of extra data points as
S^ — {pf? £ W^ \ I ̂ k and j — Lk4-M& + l,L&-l-Mk4-2,..., Lk+Mk+Nk, },
where W& is also a number relatively smaller than L&.

To calculate the solution in each zone S1&, the calculation of the unknown
coefficients a* is applied to the data points in W* U B* U S* in a similar
manner as global simulation. The basis interpolating function for zone K
is given as
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360 Boundary Element Technology

where n denotes the n^ time step and (xj.yj) E (W* U B* U S*). Having
calculated the set of unknown coefficients o^, for i — 1,2,..., f,k + M& + 7V&,
the corresponding partial derivatives for the collocation points in subset W*
are calculated but not those in B^ and S*. This is because the extra data
points in B^ and S* are from other zones, their partial derivative would be
computed when the zone they belonged are to be considered.

When the numerical values <&(%;, %/() of the next time step n + 1 are
calculated using Equation (3.4), only local information of the points in W^
is required which have all been found in previous time steps.

4 Numerical Verifications and Results

To compare the efficiency and applicability of the methods, we apply the
proposed schemes to solve a linear and a non-linear hydrodynamics models
separately.

Case 1- Linear water flow equation
This linear shallow water equation is converted by neglecting the wind stress,
bottom friction and the coriolis force terms from equations (2.1). This sim-
ple model allows a comparison of the computed results with the analytical
solution. For the time integration scheme, we adopt the Euler method of
second order which yields

«,v2(\ (4.18)

v-+i = v" - &tg {vcr + ~-HG {v= v}". (4.19)

where V is a vector of the depth-averaged advective velocities in x,y direc-
tions respectively. As shown in Figure 1, we generate 205 collocation points
in a rectangular channel with length L — 872&ra, width W = 50km and
depth H = 20m, in which 117 collocation points are in the interior, 5 are
on the water boundary and 83 are on the land boundary. The boundary
conditions are: .,., . . . _ _ . . ... , . _„,£(£) = (o coswf, at x — 0, 0 < y < W, (4.20)

u(t) = 0, at x = L, 0 < y < W, (4.21)
v(t) = 0, at y = 0, and y = W, 0 < x < W, (4.22)

and the initial conditions are Q(x,y,Q) = 0 and ((%,?/, 0) = 0, where Co =
Ira and w = 1.45444 x 10~*/s. The analytical solution to this boundary-
value problem is known and is given by

= Co cos | -=(f.-.) ^; (4,23)
/gH

(4.24)

(4.25)
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Boundary Element Technology 361

/ water-water boundary

Figure 1: A rectangular channel with 205 collocation points.

The solution corresponds only to the interaction between the incident
wave and the reflected wave from the wall at x = L. The results of Wend-
land's CSRBF cj>\ g(rj and 4-zones model are presented in Table 1 for com-

parison. For example, CSRBF ̂  %(r) for the interpolation of ( can be
written as

3-+3)].
A;

(4.26)

Table 1 shows the root-mean-square (RMS) error of the tidal level (£) and
water velocity (u) calculated by the proposed models in comparison with
the analytical solution. All results are generated with time step At = 30
seconds.

We can see from the table that the level of accuracy of the CSRBFs
decreased tremendously with decrease in scaling factor from 1.0 x 10^ to
2.0 x ICT. The results show that the computation of CSRBF is quite accurate
even for a very sparse matrix due to the simplicity of the model.

Regarding computational efficiency, Multi-zone MQ performed more ef-
ficiently with a saving of 61% in CPU time comparing the same order of
accuracy with the global MQ scheme, while CSRBF at S = 2.0 x 10? saves
only 43%.

Table 1. Results of Water velocity(ti) and current(()

4,2(1)
RMS

abs_ me
4,2(5)
RMS

abs_m<
Global
RMS

abs_ m<
4-zones
RMS

abs_m<

N
,6 = 2.0x10
error(cm)
ix error(cm)
,6 = 1.0x10
error(cm)
j,x error(cm)
MQ with r =
error(cm)
ix error(cm)
MQ with r =
error(cm)
ix error(cm)

tid
92

7
0.70
1.48

4.78
8.49

Q.Slbdrr
0.49
1.19
0.815d,
0.67
1.50

al level
102

0.32
1.18

2.58
5.95

0.71
1.51

0.74
1.44

(C)
1

0
0

4
4

1
1

1
1

12

35
67

33
73

01
76

45
58

92

0.46
0.81

2.51
4.42

0.63
1.06

0.54
0.86

velocity(u]
102

0.38
0.92

1.48
4.04

1.0
2.33

1.14
2.21

1

0
0

2
4

1
2

1
2

12

49
91

09
57

48
74

32
45

CPU time
ratio (%)
57%

(41% nonzeros
entry)
33%

(20% nonzeros
entry)

100%

39%

Case 2 - Non-linear water flow equations
In this case, the application of the schemes is applied to a real-life model.
We use Tolo Harbour of Hong Kong as a reference test case for the model
described in Section (2). The embayment of Tolo Harbour occupies an area
of 50 kw? and is 16 km long. The width of the embayment varies from
5 km in the inner basin to just over 1 km at the mouth of the channel
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362 Boundary Element Technology

Harbour. The geographical conditions of the harbour are outlined in [1].
The construction of the RBFs schemes is based on the set of 260 data points
as indicated in Figure 2.

Two Major Rivers:
1 : Tai Po River
2 : Shing Mun Rive

Figure 2: The dots (•) distributed on the map represents the interpolation points.

To satisfy the water boundary condition, the input surface elevation
(™ on water-water boundary is estimated using the equation suggested by
the Observatory of Hong Kong given as C"(^i»2/i»*) = (*(* + TcoRi) +
HcoRi for i — 1, 2, • • •, 23, where (*(Z) is the actual tide data measured at
a tide gauge, TcoRi is the time correction parameter, HcoRi is the tide
level correction parameter.

The multizone model is verified with 5-zones and 7-zones and compared
to Wendland CSRBF 0^. The numerical experiments have shown that
the degree of numerical accuracy of CSRBF has improved when a relatively
larger value of scaling factor S for the water boundary points is used com-
pared to interior points. In fact, S for these points were set large enough
to cover the whole region in order to propagate the updated information in
each time step. In this way, all the entries in the columns of the coefficient
matrix corresponding to those water boundary points are non-zero. The
remaining part of the matrix would still be banded.

The simulation is carried out for a total number of 1100 hours with
time step size of 30 seconds. The numerical results are compared with the
observed data collected at tide gauges of the harbour.

Table 2. The tidal level for the interpolation point at a tide gauge

CSRBF,
CSRBF,
CSRBF,

6
6
6

global
5 zones
7 zones
== 1.5 x
= 1.3 x
= 1.2 x

MQ
MQ
MQ
!Qb
IQG
10*

RMS
error (m)

7.41 Xl0~^
8.08x10"^
7.31 xlQ-2
7.52 xlO~^
8.35 X1Q-2
8.42 xlQ-2

absoh
errc

2.76
2.22
2.46
2.74
2.55
2.74

ite Max.
)r (m)
xlO~
Xl0~
Xl0~
Xl0~
Xl0~
xlO~*

CPU
ratio
100%
58%
48%
88%
79%
74%

time
(%)

(78%
(69%
(64%

nonzeros entry)
nonzeros entry)
non-zeros entry)

By comparing the root-mean-square errors, although the level of accuracy
of the CSRBF model at 6 = 1.5 x 10® is close to global MQ model, it
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Boundary Element Technology 363

only saves 12% of CPU times, while multizone model reduces a significant
amount of computational times by 42% when compare with the global MQ
results. The performance of multi-zone decomposition models exhibits rea-
sonable stability and accuracy. The flooding velocities showed in Figure 4
has indicated that the accuracy and smoothness in distribution of velocities
can not be maintained as good as Multizone models. Figure 3 shows the
comparison of the computed tidal level for the period between 23 February
1991 and 27 February 1991 for the nodal point at Ko Lau Wan Tide Gauge.

-*— Simulated results using on* global domain with 260 data poll
Observed hourly data at Ko Lau Wan Tide Gauge

19 28 37 46 55 64 73 82 91 100 109Time In hours (between 23/Feb to 28/Feb 1991)

>- Simulated results by compact support, scaling factorObserved hourly data at Ko Lau Wan Tide Gauge -*- Simulated results using CSRBF with scaling (actor 1 3kmObserved hourly data at Ko Lau Wan Tide Gauge
46 55 64 73 82 91 100 28 37 46 55 64 73 82 91 100 109 111Time In hours (between 23/Feb and 28/Feb 1991)

Figure 3: Comparison of the simulated results with the observed hourly tidal level in Tolo
Harbour from 23 Feb to 28 Feb 1991.

5 Conclusion and Discussion

Both compact support and multizone decomposition techniques make the
RBFs more feasible for solving large-scale problems. The numerical exam-
ples have demonstrated an improvement in computational efficiency without
significant degradation in accuracy provided a suitable scaling factor is used
for CSRBF or the multizone system is well designed.

CSRBFs approximation scheme is a relatively simple algorithm. The
degree of accuracy of the simulated results is very much dependent on the
size of the local support. To enhance the accuracy of the computations,
large scaling factor 6 could be used to increase the support for the function,
however this would result in more intensive computation. Our numerical
experiments showed that using variable 6 could alleviate the problem of
using a large support over the global domain. These two schemes do not
require the use of iterative corrections scheme to remedy smoothness across
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364 Boundary Element Technology

Figure 4: Distribution of the flood velocities in Tolo Harbour at 353 hours

boundaries which means more the computational cost. Multizone decompo-
sition approach also lends itself well to parallel computation with multiple
processors, where parallelization across zones are possible
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