Decay properties of solutions for some damped wave equations

Xiaodong Zhu

Department of Mathematics, University of Nevada, Reno, NV 89557
EMail address: zhux@equinox.unr.edu

Abstract

We study decay properties of global solutions for some non-linear damped wave equations, which include three cases: non-degenerate, degenerate, and inhomogeneous damping. A canonical model for such equations is a generalized Kirchhoff string. We establish decay properties of solutions in energy norm, and give critical damping conditions for a class of non-linear damping functions. In particular we introduce a Lyapunov function which can be used to study the case where damping term strongly depends on time.

1 Introduction

We consider the initial-boundary value problem for the following non-linear wave equation

\[
\begin{aligned}
&u_{tt} - M(\|\nabla u\|^2) \Delta u + Q(t, u_t) + f(u) = 0 \quad \text{in} \ I \times \Omega, \\
&u(0, x) = u_0(x), \quad u_t(0, x) = u_1(x), \quad \text{and} \quad u(t, x) = 0 \quad \text{on} \ \partial \Omega,
\end{aligned}
\]

where \(I = [0, \infty), \) \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega. \)

When \(M = 1 \) eqn (1) becomes a standard wave equation. The existence and decay properties of wave equations have been discussed in many literatures for a class of non-linear functions \(Q \) and \(f, \) see [1, 2, 4, 5, 6, 9, 10, 11, 12]. On the other hand global non-existence (blow-up) of wave equations has also been studied, see [3]. In particular for the following case

\[
Q = |u_t|^{q-2} u_t \quad \text{and} \quad f = |u|^{p-2} u,
\]

decay properties of global solutions for wave equations is well-known: solutions go to 0 in energy norm exponentially as \(t \to \infty \) for linear damping, and go to 0 in polynomial rate as \(t \to \infty \) for polynomial damping.

The purpose of this paper is to study decay properties of global solutions for the case \(M \neq 1. \) A canonical modal of eqn (1) is:

\[
M(u) = au^\gamma + b, \quad Q(t, u) = (1 + t)^\theta |u|^{q-2} u, \quad \text{and} \quad f(v) = |v|^{p-2} v
\]
with $a, b \geq 0$. If $b = 0$, $a > 0$, (1) is a degenerate wave equation, and if $b > 0$, (1) is a non-degenerate wave equation. For case of $n = 1$ eqn (1) describes the non-linear vibrations of an elastic string, that is,

$$ \rho u_{tt} + \delta u_t = \left\{ p_0 + \frac{Eh}{2L} \int_0^L (u_x)^2 dx \right\} u_{xx} + f. $$

When $\delta = f = 0$, eqn (3) was introduced by Kirchhoff in 1883, and is called the Kirchhoff string.

In [8] the author established decay properties of global solutions for the case $q = 2$ (linear damping) by a modified version of general theory on the energy decay of hyperbolic equations in [7]. Here we use an energy perturbation method to prove decay properties, that is, we define a new energy function (a Lyapunov function) as follows

$$ \Phi = E + \varepsilon \alpha E^m(u, u_t), $$

where E is the energy defined by solutions of eqn (1). By choosing proper numbers α and m, the function Φ provides us with a generic method to handle the cases: degenerate, non-degenerate equations as well as the inhomogeneous term $(1 + t)^b$. We show decay properties of solutions for eqn (1) in energy norm, and give critical damping condition for a class of non-linear functions Q and f.

2 Preliminaries

The existence of global solutions of non-linear wave equations has been of considerable interest to mathematicians and physicists, see [4] for classical results. In general there are two ways to prove existence: Galerkin approximation and fixed point theorem. Recently we also noticed some versions of those two methods had been used to prove existence of equations of type (1), see [8].

In this paper we will not focus on global existence. We shall assume that there are global solutions for non-linear functions Q and f in consideration, and leave global existence to separate study. Now let us define global solutions of eqn (1).

Suppose that

$$ (u(0, x), u_t(0, x)) \in H^1_0(\Omega) \times L^2(\Omega). $$

Define the solution space \mathcal{K} by

$$ \mathcal{K} = \{ \xi : I \times \Omega \to \mathbb{R} \mid \xi \in C(I; H^1_0(\Omega)), \quad \xi' \in C(I; L^2(\Omega)) \cap L^q(I; L^q(\Omega)) \}. $$
Here \(\langle \cdot, \cdot \rangle \) is the dual product over \(\Omega \), \(\| \cdot \|_p \) denotes \(L^p(\Omega) \) norm, and all derivatives involved are in the sense of distributions.

Definition 2.1. The function \(u \) is said to be a solution of eqn (1) if it satisfies the following conditions:

1. \(u \in \mathcal{K}; \)

2. Energy Identity: \(\langle Q, u_t \rangle \in L^1_{\text{loc}}[0, \infty) \) and

\[
E(t) = \frac{\|u_t\|^2}{2} + \int_0^t \|\nabla u\|^2 \, M(x) \, dx + \int_\Omega F(u) \, dx \bigg|_0^t = -\int_0^t \langle Q, u_t \rangle \quad f = \frac{\partial F}{\partial u};
\]

3. Distribution Identity:

\[
\langle u_t, \phi \rangle \bigg|_0^t + \int_0^t \left\{ -\langle u_t, \phi_t \rangle + \langle M(\|\nabla u\|_2^2) \nabla u, \nabla \phi \rangle + \langle Q, \phi \rangle + \langle f, \phi \rangle \right\} = 0,
\]

for all \(\phi \in \mathcal{K} \).

Lemma 2.1 (Sobolev). If \(u \in H^1_0(\Omega) \), then \(u \in L^q(\Omega) \) with \(1 \leq q \leq n^* \), and the following inequality holds

\[
\|u\|_q \leq C\|\nabla u\|_2
\]

where \(n^* \) is the Sobolev exponent for \(H^1_0 \), that is, \(n^* = \infty \) for \(n = 1 \), \(2 < n^* < \infty \) for \(n = 2 \), and \(n^* = 2n/(n-2) \) for \(n \geq 3 \).

3 Decay properties

In this section we construct Lyapunov functions to prove decay properties. Similar Lyapunov functions have been used in [11, 12]. Here we are going to deal with three cases: non-degenerate, degenerate, and inhomogeneous equations. The basic idea of construction of Lyapunov functions for these three cases was given in (4). But modification for each case is needed to handle its specialty.

Case 1: non-degenerate equations

Without loss of generality we assume that the non-linear function \(M \) is:

\[
M(v) = 1 + av^\gamma,
\]
where \(a \geq 0 \) and \(\gamma \geq 0 \). Consider the following initial-boundary value problem

\[
\begin{aligned}
\begin{cases}
 u_{tt} - (1 + a\|\nabla u\|^2)\Delta u + |u|^q u_t + |u|^{p-2} u = 0 & \text{in } I \times \Omega, \\
 u(0, x) = u_0(x), \quad u_t(0, x) = u_1(x), \quad \text{and } u(t, x) = 0 & \text{on } \partial \Omega.
\end{cases}
\end{aligned}
\]

(5)

Suppose that \(u \) is a global solution of (5), then the energy function \(E \) is the following

\[
E = \frac{\|u_t\|^2}{2} + \frac{\|\nabla u\|^2}{2} + \frac{a\|\nabla u\|^{2(\gamma+1)}}{2(\gamma+1)} + \frac{\|u\|^p}{p}.
\]

(6)

By the energy identity we have that \(E(t) \leq E(0) \) for \(t \in [0, \infty) \).

In (4) we choose

\[
\alpha = 1, \quad m = (q - 2)/2,
\]

(7)

and \(\varepsilon \) is a small positive integer which will be determined later. The choice of \(m \) is critical to the proof of decay properties. It is noticed that the choice in (7) is similar to Lyapunov functions which were used in [11, 12] to prove decay properties of global solutions for regular wave equations, i.e., \(a = 0 \).

Theorem 3.1. Suppose that \(2 \leq q \leq n^* \) and \(0 \leq \gamma \). Then for \(t \in [0, \infty) \)

\[
E(t) \leq c_1 (1 + t)^{-2/(q-2)} \quad \text{if } q > 2
\]

and

\[
E(t) \leq c_2 \exp(-c_3 t) \quad \text{if } q = 2,
\]

where \(c_1, c_2 \) and \(c_3 \) are positive constants which depend on initial data.

Proof. It is obvious

\[
\langle u, u_t \rangle \leq \text{Const. } E.
\]

Hence for small \(\varepsilon \) we have

\[
\frac{1}{2} E \leq \Phi \leq 2E \quad \text{for } t \in [0, \infty).
\]

(8)

Differentiating \(\Phi \) with respect to \(t \) yields

\[
\Phi' = E' + m\varepsilon E^{m-1} E' \langle u, u_t \rangle + \varepsilon E^m \langle u, u_t \rangle'.
\]

(9)

According to the distribution identity we obtain

\[
\langle u, u_t \rangle' = \|u_t\|^2 - \|\nabla u\|^2 - a\|\nabla u\|^{2\gamma+2} - \langle |u|^{p-2} u, u \rangle - \langle |u|^{q-2} u_t, u \rangle.
\]
Applying Schwarz’s inequality gives
\[|\langle u, u_t \rangle| \leq E(0)/2. \]

If \(\varepsilon \) is small enough, then there is a positive constant \(C_1 \) such that
\[1 + m\varepsilon E^{m-1}\langle u, u_t \rangle \geq C_1. \]

Thus
\[\Phi' \leq -C_1||u_t||_q^2 + \varepsilon E^m||u_t||_2^2 - \varepsilon E^m||\nabla u||_2^2 - \varepsilon a E^m||\nabla u||_2^{2(\gamma+1)} - \varepsilon E^m||u||_p^p - \varepsilon E^m\langle u, |u_t|^{q-2}u_t \rangle. \]

By Hölder’s inequality and Young’s inequality
\[|\langle u, |u_t|^{q-2}u_t \rangle| = \langle (C_2)^{1/q}|u|, (C_2)^{-1/q}|u_t|^{q-1} \rangle \]
\[\leq C_2||u||_q^q + C_2^{1/(q-1)}||u_t||_q^q, \]

where \(C_2 \) is a positive number. Then we get
\[\Phi' \leq (-C_1 + C_2^{-1/(q-1)}\varepsilon E^m)||u_t||_q^q + \varepsilon E^m||u_t||_2^2 \]
\[- \varepsilon E^m(||\nabla u||_2^2 + a||\nabla u||_2^{2(\gamma+1)} - C_2||u||_q^q + ||u||_p^p). \]

By Sobolev’s inequality for small \(C_2 \) we get
\[||\nabla u||_2^2 + a||\nabla u||_2^{2(\gamma+1)} - C_2||u||_q^q + ||u||_p^p \geq C_3 E \]
with \(0 < C_3 < 1 \). Therefore,
\[\Phi' \leq (-C_1 + C_2^{-1/(q-1)}\varepsilon E^m)||u_t||_q^q + 2\varepsilon E^m||u_t||_2^2 - \varepsilon C_3 E^{m+1} \]

Again applying Hölder’s inequality and Young’s inequality yields
\[2\varepsilon E^m||u_t||_2^2 \leq C_4\varepsilon E^{q/2} + C_5\varepsilon||u_t||_q^q \]
where \(C_4 \) is a small positive number. Finally we obtain
\[\Phi' \leq (-C_1 + C_2^{-1/(q-1)}\varepsilon E^m + C_5\varepsilon)||u_t||_q^q - C_6\varepsilon E^{q/2}. \]

If \(\varepsilon \) is small, then by the above inequality and (8) we get
\[\Phi' \leq -C_7\varepsilon \Phi^{q/2}. \]

Integrate (12) with respect to \(t \) to complete the proof.
Case 2: degenerate equations

Next we consider the case for which

\[M(v) = v^\gamma \]

with \(\gamma > 0 \). The initial-boundary value problem (1) now is

\[
\begin{align*}
 \begin{cases}
 u_{tt} - \| \nabla u \|_2^{2\gamma} \Delta u + |u_t|^{q-2} u_t + |u|^{p-2} u = 0 & \text{in } I \times \Omega, \\
 u(0, x) = u_0(x), \quad u_t(0, x) = u_1(x), \quad \text{and } u(t, x) = 0 & \text{on } \partial \Omega.
 \end{cases}
\end{align*}
\]

(13)

Suppose that \(u \) is a global solution of (13), then the energy function is the following

\[E = \frac{\| u_t \|_2^2}{2} + \frac{\| \nabla u \|_2^{2(2\gamma+1)}}{2(2\gamma+1)} + \frac{\| u \|_p^p}{p}. \]

(14)

The Lyapunov function defined by (7) can not be applied to (13) because of the degeneracy. We need choose a new \(m \) to deal with the degenerate term \(\| \nabla u \|_2^{2\gamma} \). Hence \(\gamma/(\gamma+1) \) is added to \(m \). Set

\[\alpha = 1, \quad m = \gamma/(\gamma+1) + (q-2)/2, \]

(15)

and \(\varepsilon \) is a small positive number which will be determined later.

Theorem 3.2. Suppose that \(2 < q < n^* \) and \(0 < \gamma \leq (q-2)/2 \). Then for \(t \in [0, \infty) \)

\[E(t) \leq c_1 (1 + t)^{-1/m} \]

where \(c_1 \) is a positive constant which depends on initial data, and \(m \) is defined in (15).

Proof. By Schwarz’s inequality we have

\[\langle u, u_t \rangle \leq \| u \|_2^2 + \| u_t \|_2^2 \leq \text{Const.} \ (E + E^{1/(\gamma+1)}). \]

Hence for small \(\varepsilon \)

\[\frac{1}{2} E \leq \Phi \leq 2E \quad \text{for} \quad t \in [0, \infty). \]

(16)

According to the proof of Theorem 3.1 we get

\[
\Phi' \leq (- C_1 + C_2^{-1/(q-1)} \varepsilon E^m) \| u_t \|_q^q + \varepsilon E^m \| u_t \|_2^2 \\
- \varepsilon E^m \left(\| \nabla u \|_2^{2(\gamma+1)} - C_2 \| u \|_q^q + \| u \|_p^p \right)
\]
where C_1 and C_2 are positive constants. By Sobolev’s inequality and the assumption $\gamma \leq (q - 2)/2$ we get for small ε

$$\|\nabla u\|_2^{2(\gamma + 1)} - C_2\|u\|_q^2 + \|u\|_p^p \geq C_3 \left(\|\nabla u\|_2^{2(\gamma + 1)/(2\gamma + 2)} + \|u\|_p^p/p\right)$$

with $0 < C_3 < 1$. Therefore,

$$\Phi' \leq \left(- C_1 + C_2^{-1/(q - 1)} \varepsilon E^m \right) \|u_t\|_q^q + 2\varepsilon E^m \|u_t\|_2^2 - \varepsilon C_3 E^{m+1}$$

Applying Hölder’s inequality and Young’s inequality yields

$$2\varepsilon E^{(q-2)/2} \|u_t\|_2^2 \leq C_4 \varepsilon E^{q/2} + C_5 \varepsilon \|u_t\|_q^q$$

where C_4 is a small positive number. Finally we obtain

$$\Phi' \leq \left(- C_1 + C_2^{-1/(q - 1)} \varepsilon E^m + C_5 \varepsilon E^{\gamma/(\gamma + 1)} \right) \|u_t\|_q^q - C_6 \varepsilon E^{m+1}.$$

If ε is small, then by the above inequality and (16) we get

$$\Phi' \leq -C_7 \varepsilon \Phi^{m+1}.$$

Integrate (18) to complete the proof.

Remark 3.1. The result of Theorem 3.1 does not include the following case

$$M(x) = x^\gamma \text{ with } \gamma > 0, \text{ and } Q = u_t.$$

Without further constraint on f the above proof will fail. More precisely the estimate in (17) will not hold. But if we add a linear term to f then the result of Theorem 3.2 still holds. In particular we claim that Theorem 3.2 holds on global solutions for eqn (13) when $f = u + |u|^{p-2}u$.

Remark 3.2. When $q > n^*$ ($n \geq 3$), by the main theorem of [9] we have $E \to 0$ as $t \to \infty$ if (1) is a standard wave equation, and $p \geq q$. But no decay property of solutions could be derived from that theorem. Here we claim that if $p \geq q$, $pq - 3p + 2 \geq 0$, and $q > n^*$, then Theorem 3.1 and Theorem 3.2 still hold.

Case 3: inhomogeneous equations

Finally we study the case where the damping term strongly depends on time and the equation is non-degenerate. The typical damping is of the form

$$Q = (1 + t)^\theta |u_t|^{q-2}u_t.$$
Consider the following initial-boundary value problem

\[
\begin{cases}
 u_{tt} - (1 + a\|\nabla u\|_2^{2\gamma}) \Delta u + \delta(t) |u_t|^{q-2} u_t + |u|^{p-2} u = 0 \quad \text{in } I \times \Omega, \\
 u(0, x) = u_0(x), \quad u_t(0, x) = u_1(x), \quad \text{and } u(t, x) = 0 \quad \text{on } \partial \Omega.
\end{cases}
\]

(19)

In order to handle the inhomogeneous term \(\delta\) we choose \(m = (q - 2)/2\), and \(\alpha\) is an absolutely continuous function of time satisfying

\[|\alpha'| \leq K\alpha.\]

Again \(\varepsilon\) is small and will be determined later.

Theorem 3.3. Suppose that \(2 \leq q \leq n^*\) and \(0 \leq \gamma\) and in addition \(\alpha, \delta\) satisfy

\[\text{Const. } \alpha \leq \delta \quad \text{and} \quad \alpha \delta^{1/(q-1)} \leq \text{Const.}.\]

(20)

Then for \(t \in [0, \infty)\)

\[E(t) \leq c_1 \left(1 + \int_0^t \alpha \right)^{-2/(q-2)} \quad \text{if } q > 2\]

and

\[E(t) \leq c_2 \exp \left(-c_3 \int_0^t \alpha \right) \quad \text{if } q = 2,
\]

where \(c_1, c_2\) and \(c_3\) are positive constants which depend on initial data.

Proof. Differentiating \(\Phi\) with respect to \(t\) yields

\[\Phi' = E' + m\varepsilon\alpha E^{m-1} E'\langle u, u_t \rangle + \varepsilon \alpha' E^m \langle u, u_t \rangle + \varepsilon \alpha E^m \langle u, u_t \rangle'.\]

(21)

According to (20) the function \(\alpha\) is bounded. Then

\[\Phi' \leq -C_1 \delta \|u_t\|_2^2 + \varepsilon \alpha E^m \|u_t\|_2^2 - \varepsilon \alpha E^m \|\nabla u\|_2^2 - \varepsilon \alpha E^m \|\nabla u\|_2^{2(\gamma+1)} - \varepsilon \alpha E^m \|u\|_p^p - \varepsilon \alpha \delta E^m \langle u, |u_t|^{q-2} u_t \rangle + \varepsilon \alpha' E^m \langle u, u_t \rangle.
\]

(22)

By Hölder’s and Young’s inequalities, and the assumption \(|\alpha'| \leq K\alpha\) we get

\[|\alpha' \langle u, u_t \rangle| \leq \alpha \omega K \|u\|_2^2 + \alpha \omega^{-1} K \|u_t\|_2^2.
\]

Also instead of (11) we shall use the following estimate

\[\delta \langle u, |u_t|^{q-2} u_t \rangle = \delta \langle (C_2/\delta)^{1/q} |u_t|, (C_2/\delta)^{-1/q} |u_t|^{q-1} \rangle \leq C_2 \|u\|_q^q + C_2^{-1/(q-1)} \delta^{q/(q-1)} \|u_t\|_q^q,
\]

(23)
Thus we have
\[
\Phi' \leq \left(-C_1 \delta + C_2^{-1/(q-1)} \varepsilon \alpha \delta^{q/(q-1)} E^m \right) \|u_t\|_q^q + \varepsilon \alpha (1 + \omega^{-1} K) E^m \|u_t\|_2^2
\]
\[- \varepsilon E^m \left(\|\nabla u\|_2^2 + a \|\nabla u\|_2^{2(\gamma+1)} - \omega K \|u\|_2^2 - C_2 \|u\|_q^q + \|u\|_p^p \right) .
\]
For small \(\omega \) and \(C_2 \) we obtain
\[
\Phi' \leq \left(-C_1 \delta + C_2^{-1/(q-1)} \varepsilon \alpha \delta^{q/(q-1)} E^m \right) \|u_t\|_q^q + \varepsilon \alpha C_4 E^m \|u_t\|_2^2 - \varepsilon C_3 E^{m+1}
\]
with \(0 < C_3 < 1 \) and \(C_4 = 2 + \omega^{-1} K \). Applying Hölder’s inequality and Young’s inequality yields
\[
C_4 E^m \|u_t\|_2^2 \leq C_5 E^{q/2} + C_6 \|u_t\|_q^q
\]
where \(C_5 \) is a small positive number. Finally we obtain
\[
\Phi' \leq \left(-C_1 \delta + C_2^{-1/(q-1)} \varepsilon \alpha \delta^{q/(q-1)} E^m + C_6 \varepsilon \alpha \right) \|u_t\|_q^q - C_7 \varepsilon \alpha E^{q/2}.
\]
If \(\varepsilon \) is small, then
\[
\Phi' \leq -C_8 \varepsilon \alpha \Phi^{m+1}.
\]
Therefore the proof is completed.

Remark 3.3. To apply the above approach to degenerate inhomogeneous equations has essential difficulty. If \(f = u + |u|^{p-2} u \) in (19) then the conclusion of Theorem 3.3 still holds. But for \(f = |u|^{p-2} u \) we shall leave it to further study.

At last we shall look at a concrete case. Suppose that
\[
Q = (1 + t)^\theta |u_t|^{q-2} u_t, \quad f = |u|^{p-2} u,
\]
where \(q, \gamma \) satisfy the assumption in Theorem 3.3. We choose
\[
\delta = (1 + t)^\theta
\]
and
\[
\alpha = \frac{1}{(1 + t)^{-\theta} + (1 + t)^{\theta/(q-1)}}.
\]
It is easy to see that \(\alpha \) verifies (20). Therefore, \(E \to 0 \) when \(-1 \leq \theta \leq q-1\), and the decay rate of \(E \) is given by Theorem 3.3. On the other hand, for the case \(q = 2 \), it is known that if \(\theta < -1 \) then \(E \not\to 0 \). There is also an example for the case \((q = 2) \) in section 5 of [9]. It shows that if \(\theta > 1 \), then \(E \) is not necessary to go to zero.
References

