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INTRODUCTION

In a variety of processes in the plastic industry, such as extrusion, injection molding, and
mixing, the knowledge of the temperature field and the amount of heat generated by viscous
dissipation is of great importance. Due to the strong temperature dependence of the viscosity,
the temperature field is necessary to predict the non-isothermal flow of polymer melts. In
polymer flow through narrow geometries, vast amounts of mechanical energy are converted
irreversibly into heat due to internal friction. The viscous dissipation may increase the overall
bulk temperature ot the fluid significantly, which may lead to thermal degradation of the
polymer. In fact, 50-80% of the energy required for plastication comes through viscous heating.
In order to maintain product quality, short cycle times are in conflict with possible thermal
degradation. The temperature field is also significant in typical polymer processes to predict
solidification and melting.

To solve for the temperature field in typical polymer flow problems, the equation of energy and
the equation of motion have to be solved simultaneously, taking into account the temperature
dependence of the viscosity. The convective and viscous dissipation terms of the equation of
energy require the velocity field and its gradients. Finding an exact solution for the coupled
differential equations is extremely difficult even for simple problems. More complex geometries
must be solved numerically, applying the finite difference method (FDM), the finite element
method (FEM), or the boundary element method (BEM). Some attempts have been made to
simulate polymer flow problems using FDM and FEM [1-5]; none of them took the viscous
dissipation into account. However, Nunn and Fenner (6] and Winter (7-8] investigated channel
flow of a power law fluid considering viscous dissipation by applying a central finite diffcrence
scheme. Their algorithms took into account the influence of the temperature on the velocity
profile. Zienkiewicz and Gallagher [9] solved the slit flow problem with FEM. However. both
the FDM and FEM are domain methods which require a complex domain discretization into
elements or cells. This is a tedious and time consuming process. especially when moving
boundaries, common in polymer processing, are considered.

Hence. boundary element solutions are preferred to the other numerical techniques when moving
boundaries, such as in mixing, are involved. With domain methods. generating the required
meshes necessary to compute a full cycle becomes complicated and time consuming. Here, the
mesh has to be re-shaped after each consecutive time step to fit the geometry of the new
domain. The boundary element method was applied to steady incompressible thermoviscous
flow in a moderate Reynolds number range by Dargush and Banerjee [10], but the viscous
dissipation cffects were neglected. The nonlinear convective terms were treated with volume
integrals which required a domain discretization, thus, losing the advantage of a boundary
element scheme. Gramann and Osswald [11] developed a boundary element simulation to solve
the isothermal Navier - Stokes equation. They used their simulation to model mixing in
various processes, but neglected viscous heating and its effect on the viscosity.
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This paper presents the solution of the equation of energy for flow problems using the
boundary element dual reciprocity method (DRM). To solve for velocities and velocity
gradients needed in convection and viscous dissipation problems, the boundary integral equation
for creeping flow are presented as well. In all cases the numerical and analytical results are in
very good agreement making the dual reciprocity method superior to domain type methods
including BEM with domain integration.

BOUNDARY ELEMENT EQUATIONS

Heat Transfer Equations
The two dimensional equation of energy in full length assuming incompressible flow and
constant thermal conductivity is given by:
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where, k represents thermal conductivity, T temperature, p density, ¢y specific heat, vy and vy
velocity components, i Newtonian viscosity and & an arbitrary internal heat generation term.
Equation (1) can be written into a general form of a Poisson type equation as a function of the
coordinates x and y, time t, and temperature T.

- Boundary Integrals Using the Dual Reciprocity Method
The body term of the general Poisson equation for two-dimensional applications can be
expressed using a particular solution. The particular solution is usually difficult to evaluate for
nonlinear and time-dependent problems. For general field problems Partridge and Brebbia [12]
introduced the dual reciprocity method which applies a series of localized particular solutions.
Applying this method [15] to Eq. (1) reduces to:
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where, the right-hand side represents a series of localized particular solutions. A boundary
integral equation can now be derived for both sides of Eq.(2) using a direct or indirect
formulation. The indirect formulation is based on Galerkin's method and weighted residuals.
The derivation of the boundary integrals that satisfy Eq.(1) and the boundary conditions is
explained in detail by Gipson [13] and Brebbia [14]. The resulting equation is as follows [15]:
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where ¢j is 1/2 for a point on the boundary, 0 for a point outside the domain and 1.0 for a point
inside. The term T* and q* are fundamental solutions:
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Here r represents the distance from the point of the potential to the point under consideration. A
numerical solution of Eq.(3) requires a segmentation of the domain and of the boundary into
elements. The temperature and the normal derivative of the temperature are assumed to be
constant over the elements and equal to the value at the midpoint. In matrix form Eq.(3) can be
written as:

H'T - Gq = (GQ - H'T)B (5)

The matrices G, H', Q, and T are all of the size (N+L)x(N+L). The vectors T and P are of the
size (N+L), while the size of the vector q is restricted to the boundary nodes (N) [15]. The
elements of the coefficient matrices G and H are integrated using the Gaussian quadrature
technique [15]. Matrix F, which is based on the distance function r. According to Partridge and
Brebbia [12], a higher order of the series expansion does not result in a noticeable increase in
accuracy.

Flow Equations
Neglecting variations in the third dimension and the compressibility of the polymer, the
continuity equation simplifies to:

Veu =0 ©6)

Assuming a Newtonian fluid where the viscous forces are much larger than the inertia effects,
the momentum balance of a typical mixing problem reduces to:

VP + quu =F @]

For complex geometries. as is the case in most polymer processes, this equation cannot be
solved analytically. Here, we chose the boundary element method to solve the governing
equations for any given geometry and boundary conditions. It should be noted that two
boundary conditions on each boundary are known and two conditions are always unknown, and
must be solved for. The boundary conditions can be either a known traction, tg = tg OT
velocity, Ug = Ug . During the formulation of the boundary integral equation, Egs.(6) and (7)
must be satisfied and the rcquired boundary conditions must be met. The following boundary
integral equation for Newtonian, isothermal creeping flows results from a weighted residual
statement that satisfies Eq.(6) and boundary conditions [16]:

i X K _
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In Eq.(8) t* and U" are fundIz;mental solutions which represent velocities and tractions in the 1
and 2 diretions iff an infinite domain, caused by the concentrated forces acting in the two
perpendicular directions xk=1,2 on a singular point "i". The fundamental solutions for velocity
and traction are as follows [17]:
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Since the integrals in Eq.(8) cannot be evaluated analytically, the boundary is discretized into a
finite number of elements. This analysis utilizes constant boundary elements where the values
of Ug and to are assumed to be constant on each element and equal to its value at the
midpoint, which reduces Eq.(8) to a set of linear algebraic equations.

RESULTS

Transient Heat Conduction
The time dependent heat conduction equation is:

2p_ 19T
vir=_% (10)

Using the general dual reciprocity Eq.(5), results in [15]:
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where S = (GQ - H'T)F'l. After the S matrix is assembled, Eq. (11) can be evaluated. The
only remaining unknowns are the vector T, which contains the temperatures, and the vector q,
which contains the temperature gradients. If initial temperatures and the boundary conditions are
known, Eq. (11) can be converted into a linear system of equations.

Recently, Mitzig [15] investigated the accuracy of the DRM and the impact of the position and
number of the internal nodes the method was applied to the cooling of a square domain, where
the initial temperature is 30°C and all four sides are cooled instantaneously down to 0°C, at t =
0. The exact solution to the two-dimensional problem is given by Bruch and Zyvoloski [19].
The thermal diffusivity is set to be ayx = ay = 1.25.
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Figure 1. Transient heat transfer results comparing DRBEM, FEM to analytical.

As a demonstration of the accuracy of the transient heat transfer DRBEM, the results of a
highly refined discretization are shown in Fig. 1. The discretization used for this figure
consisted of 480 boundary elements and 120 randomly distributed internal points. This
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solution was obtained from a version of the program that was coded to run on a parallel
computer by Davis and Osswald [20]. This version offers substantial speed-up over the serial
version and allows problems with very large numbers of elements to be computed in a short
amount of CPU time. Figure 1 shows that the initial oscillations at small times have been
eliminated and the solution is in excellent agreement with the analytical result. For reference.
the results from a finite element analysis using triangular elements are also shown in Fig. 1.
The FEA used 128 elements and an Euler time stepping scheme to offer a comparison to the
DRBEM. It should be pointed out that to avoid spurious oscillations, the FEA needed a time
step twenty times smaller than the DRBEM. In addition, Fig. 1 shows that even with the
small time step, the FEA solution is less accurate than the DRBEM.

Combining Viscous Dissipation and Convection

Non-isothermal flow phenomena between parallel plates and in tubes was studied by several
authors [6-8,21-22]. The solution of the coupled, nonlinear differential energy equations is
fairly complicated for even one dimensional flow problems. Comparing the numerical results of
convection effects combined with viscous dissipation between parallel plates to an exact
solution as presented by Ybarra and Eckert [21] is challenging when real material data is used.
This is explained with the following arguments: first, the conduction term in flow direction
cannot always be neglected as it was assumed when the eigenvalue solution was derived;
second, the length, 1, must be "infinite" to achieve thermal equilibrium, which is cumbersome
to simulate. Mitzig [15] used DRM to study viscous effects and convective effects separately
and collectively to validate the method with analytical solutions. The next step within the
project was use the combined viscous dissipation and convection effects to solve realistic
problems which do not have analytical solutions. The DRM equations considering viscous
dissipation and convection terms are derived in the following section and results are shown for
non-isothermal flow inside a single rotor mixer, where the velocities and the velocity gradients
were computed with the flow portion of the boundary element program [11.17]. Combining
the DRM equations considering viscous dissipation and convection [15], results in

[ - 8 (e )T
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If the velocity and the velocity gradients are known, the equation can be converted into a system
of linear independent equations and the temperature and its gradient can be solved for.

N boundary points

High Density Polyethylene
Conductivity: 63000 g cm/s®* C

Thermal
Diffusivity: .0021 cnv/s
Density: .95 g/en?

Specific Heat: .55 cm?/s?
Vigcosity:
185 C:  53000g/s cm
250 C: 13000g/s cm

T=180°C
=0.125 rev/sec, 1.0 rev/sec

Figure 2. BEM discretization for the single rotor mixer.
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To be able to simulate more complicated flow problems, where the velocities and the velocity
gradients cannot be computed analytically, a flow [11] and the heat transfer algorithm [17] were
combined. To test the coupled flow and heat transfer equations, the mixing inside the single
rotor mixer shown in Fig. 2 was simulated. The streamlines shown in Fig. 3 were computed
using the flow simulation described in the previous sections. Here, the recirculation and

Figure 3. Streamlines for the single rotor mixer computed by BEM.

stagnation areas can be clearly seen. The accuracy of the boundary element method can also be
seen by the repeated return of the particles to their starting points after they complete a full
cycle on their streamline. To increase the efficiency of mixing, the geometry of mixers are
changed to increase the strain rate that the fluid undergoes. The high strain rates present during
the mixing process generate heat by viscous dissipation, greatly influencing the temperature of
the polymer inside the cavity. The importance of the energy generated by viscous dissipation
and its transport by convection become more significant as the rotor speed is increased. The
boundary conditions and material properties used to analyze the temperature of the point shown
in Fig. 3, are shown in Fig. 2. The internal points needed for the dual reciprocity method are
those that make up the streamlines shown in Fig. 3 which were calculated using the flow
portion of the program. The viscosity corresponds to the average temperatures in the system,
requiring an iterative procedure for its computation. The temperature increase and variations
caused by viscous dissipation and the influence of convection are shown in Figs. 4 and 5.

When the rotor speed is 0.125 rev/sec the viscous dissipation causes a 7°C rise in temperature;
Fig. 4. As expected. the temperature profile caused by viscous heating is symmetric on both
sides of the rotor. In the wide gap area of the mixer, “W", the temperature of the fluid is close
to the barrel wall temperature. This is due to the low viscous heating in this area and direct
heat conduction to the barrel wall. The high temperature areas of the graph correspond to the
two recirculation areas of the mixer, “R.” Although, the viscous heating is significant in the
area of the rotor tip, "T". the heat conduction to the barrel wall lowers the temperature of the
fluid due to the narrow gap. When the energy transport by convection is included the
temperature profile is slightly shifted with more variation in temperature in the recirculation
area. However, because of the low rotational speed, the energy transported by convection is
small; resulting in two similar temperature profiles.

Increasing the speed of the rotor to 1.0 rev/sec the temperature increase caused by viscous
dissipation can be as high as 90°C; Figs. 5. It should be noted that in this case the viscosity
of the fluid was lowered to 13 MPa-s. Again, it should be pointed out that a low Nahme-
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Griffith number was assumed, and therefore, a constant viscosity throughout the domain. This
assumption is no longer valid for the high temperature variations. However, the results are of

qualitative value when studying the effects of viscous dissipation and convective energy
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Figure 5. Temperature of a particle traveling on streamline "A" caused by viscous heating

with and without convective transport. ® = 1.0 rev/sec.
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transport. When compared to the 0.125 rev/sec rotor speed resuits, the temperatures increase
maintaining a similar profile. However, when the effects of energy transport by convection are
included, the temperature profiles significantly decrease with highest variation in the
recirculation regions. From a numerical standpoint it is important to mention that the ratio of
convective to conductive energy transport for the 1 rev/s case was on the order of 10,000. Most
numerical solutions are unstable at those high values; as a result, requiring up-winding
techniques as in the finite element method. The measure of the convection to conduction ratio
is most commonly referred to a the Graetz number and for this problem is defined by

_ convective transport _ ax?
~ conductive transport o

(13)

where € is the rotational speed of the mixer, X a characteristic dimension and a the thermal
diffusivity.

OUTLOOK

We are currently able to solve three-dimensional fluid flow problems and work is underway in
developing DRM to allow the simulation of non-linear flow problems. We will be able to use
this to simulate realistic polymer processing flows as shown in Fig.6. The figure depicts a
single screw extruder where 9 points were tracked using the flow BEM program and compared
with experimental results [23].

CONCLUSION

Several variations of the equation of energy for problems encountered in polymer processing
were solved using the boundary element method; a technique which requires simpler problem
discretization than the finite difference and the finite element method. For problems such as the
homogeneous Laplace equation the boundary element method needs only a discretization of the
boundary and not the domain. For time dependent problems, the nonlinear terms were treated
with the dual reciprocity method with randomly distributed internal nodes. The dual reciprocity
method appeared to be superior in accuracy over domain type formulations with no need for
domain integration, which is very cumbersome when moving boundaries are involved. Since
the dual reciprocity method is a general applicable technique, algorithms for heat generation
during exothermic cure reaction, viscous dissipation, convection, and viscous dissipation
combined with convection were developed. The results agreed well with analytical and exact
solutions. Oscillations in the convection problems were avoided by increasing the number of
elements on the boundary. Heat transfer problems involving more complicated fluid flow were
computed using an existing boundary element code that solvcs the Navier-Stokes equation and
the results are plausible.
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