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Abstract

This paper presents a modeling procedure to measuring abnormal intra-QRS signals in the high
resolution electrocardiogram (HRECG). Abnormal intra-QRS potentials (AIQP) are defined as
very low-level notches and slurs in the high resolution QRS complex. AIQP are isolated using
(i) parametric linear and (ii) non-linear modeling techniques for representing the predictable,
smooth normal, part of the QRS from the original waveform. The first approach considers
HRECG signals as time domain phenomena, although using the frequency domain for
computational convenience. A discrete cosine transform (DCT) of the QRS complex is first
obtained, in order to form an energy compacted description of the signal. The DCT of the QRS
is considered as the impulse response of a linear model, estimated with ARX (autoregressive
model with exogenous input) and OE (output error) structures. The second approach uses a
non-linear ARX (NARX) structure, parametrizated by an artificial neural network, for
estimating the smooth normal part of the QRS. AIQP were quantified using the residual of the
modeling procedure. The problem of model order selection of the linear models and neural
networks structure were solved empirically, in a data-dependent manner, using a training
dataset. The modeling processes are capable of separating relatively predictable (normal,
smooth) and unpredictable (abnormal) components of the HRECG. A clinical study strongly
suggests that AIQP amplitudes are significantly greater in patients with ventricular tachycardia
than in those with no-events. AIQP can be used as a new predictive index of arrhythmic events.

1 Introduction

The high resolution electrocardiogram (HRECG) is a noninvasive technique
used to detect low amplitude and high frequency cardiac signals, not observable
in the standard electrocardiogram. The main application of the HRECG has
been the detection of ventricular late potentials in the terminal QRS complex
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272 Simulation Modelling in Bioengineering

that correlate with reentrant ventricular tachycardia (VT) following myocardial
infarction (MI) [1]. Late potentials (LP) represent activation of injured but
viable cells within and surrounding infarct regions. They are defined as
abnormal signals that outlast the normal QRS period during normal sinus
rhythm. Abnormal signals resulting from disruptions of ventricular activation
are present within the QRS, but are detected and interpreted only in the
terminal portion. LP have been commonly characterized in the time domain by
measurement of total QRS duration (QRSD) and root mean squared (RMS)
amplitude of the terminal 40 ms of the filtered QRS (RMS40) [2]. Several
studies suggest that the reentrant activity may be wholly contained within the
normal duration of the QRS [3] [4]. In these cases a VT reentry circuit can not
be detected. On the other hand, late potentials are not necessarily a marker of a
VT reentry circuit [1]. This lack of specificity produces a low positive
predictive value for VT detection (10-25%) in studies of post MI patients.

These limitations have motivated the idea of characterizing abnormal
signals linked with VT reentry circuits occurring anywhere within the period of
ventricular activation. Several attempts have been made to analyze abnormal
mfra-QRS signals in the frequency domain and time-frequency plane [5]-[6].
These approaches have implicit limitations due to spectral resolution and
technique-induced artifacts. We have recently proposed the concept of
abnormal intra-QRS potentials (AIQP) with the purpose of enhancing the
predictive value of the HRECG for arrhythmic events [7]. AIQP are defined as
very low-level notches and slurs in the high resolution QRS complex. These
potentials have long been associated with scarring from myocardial infarction
[8], but not with arrhythmogenesis. However, like conventional late potentials,
AIQP arise from myocardial infarct regions of scarring and are a potential
marker of reentry. The pathophysiological basis of AIQP and their relationship
to arrhythmogenesis has recently been studied [9].

Our objective is to characterize abnormal intra-QRS potentials in the time
domain for extracting new indices of arrhythmic events. Section 2 describes
two approaches for modeling the predictable, smooth normal, part of the QRS
for estimating AIQP. The first ones uses parametric linear structures. In the
second approach, the modeling QRS is obtained through non-linear structures
parametrized by feedforward neural networks. The performance of the methods
is considered in Section 3, where AIQP indices are applied to a population
including VT and nonevent subjects.

2 Methods

2.1 Data Acquisition and High Resolution ECG Analysis

A dataset consisting of 16 VT and 24 no-event subjects, from a previously
analyzed dataset [10], were used to develop parametric modeling techniques as
described in the next sections. The high resolution ECGs were recorded using
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Simulation Modelling in Bioengineering 273

orthogonal XYZ leads [2] with signal-averaged techniques performed with the
Predictor system (Corazonix Corp., Oklahoma City). Details of the acquisition
and processing protocol have been published elsewhere [2] [10].

Abnormal intra-QRS potentials indices were estimated from each
individual unfiltered, high resolution XYZ lead. In addition, two standard time-
domain indices were calculated from the bi-directional filtered vector
magnitude: the total QRS duration (QRSD) and the root mean squared
amplitude of the terminal 40 ms of the QRS (RMS40).

2.2 Parametric Modeling of the HRECG

Abnormal intra-QRS potentials were calculated by the residual of parametric
modeling processes. Each individual-lead HRECG QRS complex is presented
unfiltered to be mathematically modeled. These signals can be considered as
the response of the cardiac system to an stimulus. Therefore, computer acquired
QRS waveforms modeling can be based on the identification of a discrete-time
system. Considering an input stimulus u(t) and an output (QRS waveform) y(t)
observed at sampling instants t = 1,2,...,N, a general model of a discrete-time
dynamic system can be expressed as

(1)

where f(-) is some linear or nonlinear function; the additive term vft) represents
the fact that the output y(t) is not an exact function of past observed data. The
function/f,) represents a general regression model structure, and it is expressed
as a function of a finite-dimensional parameter vector 6 and a finite-
dimensional regression vector y(t),

(pW = (pCy(̂ -lX...,X̂ -̂ ),M(0,...,w(r-Mj) (2)

where riy and r?% are the maximum lags considered for the output and input

respectively. Parameters are selected from 0=9^ so that a loss function VN is

minimized in terms of the error between the model and the observed data:

1 ^
8̂  =arg min ̂(8) = arg min —%(Xf)-/((p(f),8))' (3)

e e YV ,=i

where arg min denotes the minimizing argument. Our work will be choosing
appropriate model structures f(-) and estimating procedures for adjusting the
predictive QRS waveform y(t),

)>(') =/((p(f),8J (4)

to the normal smooth part of the QRS complex. The modeling procedures
isolates the predictable part of the QRS from the original waveform. Then, the
modeled QRS signal is subtracted from the original data. The difference is a
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274 Simulation Modelling in Bioengineering

residual signal which represents the part that could not be modeled. This signal
represents the abnormal intra-QRS potentials. AIQPs were quantified by
computing the RMS amplitude between the QRS limits. Only an approximate
knowledge of the QRS onset and offset is needed.

2.3 Linear Modeling structures

Linear model structures constitute the most common class of modeling a
discrete-time dynamic system. Previous attempts to approximate a time domain
ECG signal, as an impulse response of a pole-zero model, have lead to system
structures of very high model order [11]. To overcome this limitation, the
original HRECG is pre-processed with the discrete cosine transform (DCT)
prior to the modeling procedure. This energy compacting transformation
produces damped cosinusoid waveshapes well suited for estimation by linear
modeling structures. The DCT of a discrete signal x(t) of N samples (for
t = 0,1,... ,N- 1 ) is defined as

6 = 0,1,.. .,#-1 (5)

where Q = 1 / V2 , for k = 0 and Q = 1, for k > 0 . Once the modeled QRS is

obtained, it is restored to the time domain, applying the inverse DCT .
A general, linear, time-discrete parametric model can be written as [12]

where G(q,§) represents a rational transfer function in the backward shift
operator q, i.e. q~*y(t) = y(t - 1) , such that

The unpredictable term v(t) can also be expressed as a function of a
rational transfer operator H(q,Q) and some white noise sequence e(t):
v(0 = H(q$)e(t) , where H(q,$)=C(q)/D(q). Several linear structures are used

in practice, where the main problems consist in selecting an efficient estimation
technique and choosing a correct model order.

2.3.1 ARX modeling
The most simple linear modeling is the autoregressive model with an
exogenous input (ARX). This structure uses the same denominator for G(q) and
H(q)\ A(q)=D(q), and has C(q) = 1 , that is : A(q)y(f) = B(q)u(f) + e(f) , or

7=0

                                                             Transactions on Biomedicine and Health vol 3, © 1996 WIT Press, www.witpress.com, ISSN 1743-3525 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Simulation Modelling in Bioengineering 275

where 8=[a, • -^ V » ̂ f ' ̂ d #) = hX'-l) ' ' ' -y(t-*y) "(0 • • • «(̂ -nw)f .

This structure has the advantage that the predicted signal is defined by a linear

regression, j>(f) = 9̂ (06. and its parameters can be estimated analytically,

minimizing the loss function described in equation (3) ,

(9)
n=p+\

where p is the greater value between ny and %%. The data of TV samples include
a pre- windowing of p zeros.

2.3.2 OE modeling
The second linear model used was the output error (OE) structure. This model
is described by a linear relationship between the non-disturbed output of the
system, ŷ (t) , and the input. The output signal is obtained by adding ŷ (t) to

a white noise sequence eft) (H(q)=l), i.e.

(10)

(11)

This structure represents a special case of the general linear model structure of
eq. (6), where the noise sequence, eft) = vft), will then be the difference (error)
between the observed and the non-disturbed output. The parameters of A(q) and
B(q), in this structure, cannot be minimized by analytical methods. They were
estimated using iterative optimization techniques for minimizing

A Gauss-Newton algorithm, as described in the next section, was used to
search iteratively for the parameters values [12].

2.3.3 Model order selection
The fit of the normal part of the QRS is constrained by the chosen model order.
Lead-specific model order were used. A low A(q) and B(q) polynomial order
extracts notches and slurs, but it also causes normal components of the QRS
appear in the residual. An optimal model order, according to Akaike's
information criteria (AIC) [13], accurately models both the normal and
abnormal components of the QRS and overestimates the necessary number of
parameters. Model order were selected empirically using a training dataset from
the 2 groups of patients: 10 VT and 10 no-event subjects were randomly
chosen. For each lead independently, the model which maximized the ratio of
mean AIQP amplitudes between the VT and no-event groups were chosen.
Amplitudes of AIQP were found to be significantly higher in the VT than in the
no-event training group. Each lead-specific model order selected is given in
table I. These model orders were used for every patient of the complete dataset.
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Input layer Hidden layer Output layer
(/'inputs) (/nodes) (1 node)

Figure 1: Feedforward network with one hidden layer

2.4 Non-Linear Modeling of the HRECG using Neural Networks

It has been proved that any continuous non-linear function can be approximated
by a multilayer feedforward neural network with sufficient nodes in the
hidden layers [14] [15]. This has motivated the use of a non-linear model
structure based on neural networks for modeling HRECG signals. Following
the nomenclature for linear models, several non-linear modeling structures
have been developed for representing the function /(•) in eq. (1), depending on

the regression vector selected; such as the non-linear autoregressive moving
average with exogenous inputs (N ARM AX) model, the non-linear ARX
(NARX) structure or the non-linear OE (NOE) model [16].
We used a NARX model structure, parametrized by a multilayer feed-forward
neural network (multilayer perceptron). This model consists of an input and
two processing layers (see figure 1). The input layer is formed by the elements
of the regression vector. The inputs are propagated forward through two
processing layers before the output sample is calculated. The processing layers
are formed by a hidden and an output layer, which consist of a number of
computing nodes based on McCulloch-Pitts neurons. Each node makes the
operation of a weighted sum of the incoming signals and a bias term, fed
through an activation function (?(•), resulting in the output value of the neuron.

The dimension n of the regression vector, q>(/) = [q>, ... <pj, determines the

number of inputs in the network; where n = ny+nu+L Each input is fed to each
node of the hidden layer. A generic /th hidden node, /*/, with n inputs and one
output, has an input-output relationship as

n
A/=o(^w^ + w,o) (13)

7=1

where Wy are the weights of the /th node given to eachyth input and w^ is the

bias associated with each node. The activation function of the hidden nodes
was chosen as an hyperbolic tangent, o(x) = tanh(jc) = (1 - e~**)/(l + e"̂ ). The
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Simulation Modelling in Bioengineering 277

output layer contains one node with a linear activation function, resulting an

estimating output of the model as
nh nh n

y(t) = /((pO)4 ) = £0ft + »i = 2X tanh(5>09, + w«,) + W, (14)

where nh is the number of hidden nodes, Wi are the weights given to each zth
output of the hidden nodes and WQ is the output node bias. W» W^ , w,y and w^

are the model parameters and they are calculated through a training process.
For the non-linear modeling procedure we considered the QRS waveform,

y(t), as the system response to a ramp input, u(t). The NARX structure network
is trained for predicting each value of y(t), based on observed output values

yft), as the target, and its regression vector (p(f) as the network input. (p(f) is

defined by the same regressor as for the linear ARX model. This network has
the advantage of possessing a static predictor ; i.e., none component of the
regression vector depends on past outputs of the model. Other non-linear
structures as N ARM AX or NOE models need a recurrent neural network.

2.4.1 Model structure selection
To settle the structure of the neural network based NARX model, the
dimension of cp(f) (the model order) and the number of hidden nodes had to be

chosen. Lead-specific network structures were used. The model order and the
number of hidden nodes, nh, will decide the model abilities for approximating
the normal part of the QRS complex. After having tested several alternatives
for each lead, using the training dataset, we chose a model structure with nh = 6
in the X and Z leads and nh = 7, in the Y lead; and a model order given by

ny=l and mW, i.e. <p(t) = [-y(t-l) u(t) u(t-V)}.

2.4.2 Parameter estimation algorithm
The training is done in a batching operation using a regression matrix, formed
by the regression vectors <p(f), as the network input and the observed QRS, y(t),
as the target output. The objective of training is then to determine a mapping
from the set of training data to the set of possible parameters 6^ , minimizing

the loss function described by eq. (3). The search for the minimum cannot be
computed analytically so it has to be done by some optimization method with
an iterative scheme according to

where e<;> is the parameter estimate after iteration number /, g<'"> is a search

direction function based on the gradient of v»<$y) and ̂  is a step size, g^is

usually expressed in terms of the loss function gradient and a search direction

matrix /?<'">, g^ =[̂ ]"V̂ (9̂ ). For R^ = I (identity matrix), a simple

gradient direction search is used as the steepest descent algorithm. Back-
propagation error rules are steepest descent-type algorithms. They suffer from a
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Figure 2: Examples in the X lead of the modeling techniques and estimates of
AIQP. (a) A VT subject with a notch, (b) A no-event subject.

slow convergence rate. This can be improved using a Newton search direction,
given by the loss function Hessian, R™ = F̂ (0̂ ). This function may be quite

costly for computing. In practice, approximations of the Hessian, //<", are
normally preferred, as the Gauss-Newton methods and its Levenberg-
Marquardt modification. The Gauss-Newton search direction is defined by
R^ = H^ and ju^ is usually set to 1. In the Levenberg-Marquardt algorithm the

Hessian is approximated by H™ adding some small positive scalar 8, given a
search direction defined by R™ = #<'"> +8 ®7 (see details in [12][16]).

Parameters then were estimated with a Levenberg-Marquardt algorithm
using MATLAB. 8^ was initially set to 1 and it was adjusted adaptively by the
algorithm according to the loss function decrease ratio.

3 Results

The modeling processes to extract abnormal signals in the HRECG were
applied to each XYZ leads of both VT and non-VT groups. The performance of
the linear and non-linear procedures is depicted in figure 2. Panel (a) shows the
original (top trace) and modeled X lead from a VT subject with a QRSD of 107
ms. From top to bottom, the traces are the original, ARX, OE and NARX
modeled signals. The bottom trace corresponds to the residual (AIQP signal)
formed by subtracting the NARX modeled QRS from the original. A visible
notch is seen in the AIQP waveform. The RMS amplitude of the AIQP signal
depends on the model structure used: AIQPxARx = 13.85 |LiV, AIQPxoE= 16.19
jiV and AIQPxNARx = 16.67 juV. Following the same format, panel (b) shows
the X lead from a non-VT subject. The AIQP signal has no distinct features or
transient events. The RMS amplitudes are: AIQPxARx = 5.84 |iV, AIQPxoE =
9.45 fiV and AIQ?XNARX= 2.20 jiV.
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Simulation Modelling in Bioengineering 279

HRECG Index

AIQPxARx [wy=7,ra/=8]
AIQPyARx [wy=8, »w=3]
AIQPzARx [wy=5,ra<=15]
AIQPxoE [«y=3, ww=8]
AIQPyoE [wy=9, wn=3]
AIQPzoE [«y=7, %w=8]

AIQPXNARX [«y=l, m/=l], %/z=6
AIQPyNARx [«y=l, ra/=l], nh=l
AIQPZNARX [«V=1, %%=!], %&=6

RMS40
QRSD

Non-VT (24)
(|LiV RMS)
6.49 ±2. 12
34.45 ±22.96
7.69 ±4.21
11.11±3.68
21.25+8.70
6.45±3.98
5.60+3.94
6.32+4.31
7.58+4.09

29.84 ±22. 11
105.1 ±20.5 ms

VT(16)
(|iV RMS)
12.52 +7.04
49.11 ±26.60
13.28+7.31
18.41+8.44
28.84+18.24
10.80+6.20
10.27+7.82
9.45±7.11
20.30±17.79
38.15 ±38.91
113.8 ±22.1 ms

p value
0.004
0.084
0.011
0.004
0.137
0.021
0.039
0.128
0.012
0.447
0.219

Table I: Mean AIQP and LP values in VT and non-VT groups.
A p value < 0.05 indicates a significant difference between groups.

The mean RMS amplitudes of AIQP in the XYZ leads for the VT and non-
VT groups, for the different modeling techniques, are shown in Table I. The
model structures selected for each modeling procedure is shown for each AIQP
index. For both linear an nonlinear modeling methods, AIQP amplitudes are
significantly greater (p<0.05) in patients with VT than in those without VT.
Statistical analysis of the data was performed using a 2-tailed Student t test.
Both linear modeling structures in lead X give a highly significant difference
(p<0.01) between groups. Differences in QRSD and RMS40 are small.

4 Discussion and Conclusions

Abnormal intra-QRS potential signals in the HRECG have been extracted
using parametric linear and non-linear modeling techniques. Similar results
were obtained from the different methods, selecting a proper model order or
neural network structure. Linear modeling with an ARX structure is the first
option for clinical application because the estimation of the parameter values is
straightforward by linear regression. However, linear structures requires a pre-
processing of the original signal for energy compacting. AIQP allows
measurement of potential pathophysiologic signals contained wholly within the
normal QRS period. HRECG indices based in the AIQP amplitude significantly
enhance VT and no-event groups classification. This preliminary clinical study
strongly suggests that AIQP can improve the sensitivity and positive predictive
value of the HRECG for VT detection. The modeling techniques do not require
exact determination of QRS limits, reducing dependence on different
algorithms and filtering techniques for estimating the QRS onset and offset.

Key words : Non-linear modeling, High Resolution ECG, Signal Processing,
Neural Networks
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