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Abstract

A numerical code for analyzing the dynamic behaviour of heart valve prostheses
is presented. The study is conducted with the valve in a simplified cardiovascular
system, represented schematically by a circuit with a pump, the valve under test,
arugged elastic tube and a capacity. The pump represents the left ventricle, while
the tube and the capacity represent the arterial system. The tube, unlike the other
components, presents propagative effects. Input includes the physiological data
and valve type, geometry and masses, while time-dependent output include fluid
pressure and velocity in the circuit and downstream of the valve, valve opening
time and the angular speed and acceleration of moving parts.

1 Introduction

Mechanical aortic and mitral valve prostheses are designed and constructed to
reproduce natural heart valves as faithfully as possible. Such prostheses consist
essentially of a rigid ring carrying one or two mobile members which alternately
permit and prevent the passage of blood. From the mechanical standpoint, these
valves are passive members and can be regarded as check valves which are subject
in operation to the action of the surrounding fluid. In particular, it has been ob-
served that valve closing is determined by blood backflow, and takes place in a
way which does not adequately reproduce the phenomenon of early partial closing
typical of natural valves. Kang [1] and Van Steenhoven [2] have shown that most
mechanical aortic prostheses now on the market close only 5% of the passage
section during systole, a value significantly below that of the natural aortic valve,
which is estimated at around 74%. This means increased blood backflow, larger
swings in pressure after the valve closes, and a less gradual closing process,
leading potentially to cavitation (Kepletko [3]).
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The many published studies of heart valves have used both experimental and
theoretical-numerical approaches. For the static case, for example, contributions
include those of Idelsohn, Costa & Ponso [4], Milton Swanson & Clark([5],
Belforte, Raparelli & Romiti [6], Handle, Harrison, Yoganathan, Allen & Cor-
coran [7], Hansekam, Westphal, Nygaard, Reul, Giersiepen & Stodkilde-
Jorgensen [8]. For the dynamic case, which better reflects actual operating con-
ditions, the literature is more meager (Peskin [9], Graf, Fisher, Reul & Ran [10]).

This paper presents a numerical calculation program for analyzing the dynamic
behaviour of heart valve prostheses. The study is conducted with the valve in a
simplified cardiovascular system, represented schematically by a circuit with a
pump, the valve under test, an elastic tube and a capacity. The pump represents
the left ventricle, while the tube and the capacity represent the arterial system.

2 System model

The circuit layout used for the theoretical study of the valve is illustrated in Figure
1. It includes a pump V simulating the left ventricle of the heart, a check valve
V, simulating the aortic valve, an elastic tube of length 1, and a capacity C,. The
latter two items simulate the arterial system.
Pump. This is an ideal component which generates a pressure similar to that of
the left ventricle. In Figure 2, the solid line represents effective pressure, while
the dash line represents the pressure obtained by approximating the actual curve
with a 6th degree polynomial and straight sections.
Heart valve. The recent "mobile bileaflet” design shown in Figure 3a was selected
from amongst the various types of artificial valve now on the market. Valve
passage area a depends on leaflet position 6 (Figure 3b) as follows:
a=A(l-cos0) (1
where A is the maximum passage cross-section, viz. that of the aortic tube.
The equation for flow rate through the valve is:

Q =C,aNQAp/p) @)

where C| is the outflow coefficient, Ap is the pressure drop across the valve, and
p is blood density. In the case of reverse flow (backflow), the outflow coefficient
was reduced by 1/4 given the different geometry.

With J as the leaflet’s moment of inertia relative to the rotational axis and y, as
the center of thrust (which coincides with the center of gravity if pressure is
uniform over the area), the leaflet’s equation of motion is:

A .
(py=p1)7 yecos(®) =18 3)

where p, and p, represent the pressures at the valve/ventricle and valve/aorta
interfaces respectively.
Aortic tube. Assuming non-compressible, homogeneous and single-dimensional
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flow, the state variables pressure p and velocity u, which are functions of time ¢
and the axial coordinate x along the tube, are linked by the motion equation (4)
and the continuity equation (5):

du ou 1 dp  _ulul_

E'i'll ax+5-*a—;+ ? 0 (4)
AAu) A
ox a0 ®)

where A =1 -7 is tube cross-section, r is tube radius and f is the friction coef-
ficient. Cross-section A depends on the transmural pressure (the difference in
pressure between vessel interior and exterior) in accordance with the following
algebraic relation provided by Fung [11]:

r=rots (e -py) ©)

where r, is the radius of the vessel when p = p, and a is the vessel’s compliance
(m/Pa), which is assumed to be constant.
Given (6), (5) becomes:

du odp o dp

ox r8t+ruax_0 )
Partial differential equations (4) and (7) can be formulated as ordinary differential
equations. Multiplying (7) by an appropriate coefficient and summing it with (4)
gives two ordinary differential equations:

du 1 dp , full o

* + 8
dt “pCdt— 4r ®
These equations are valid along the lines defined by
dx
—=uzxC 9
T )

where C =r/pa. This value represents the propagation speed of the small per-
turbations in the tube. Expressions (8) are called characteristic equations and are
indicated with C* or C, depending on whether a + or - sign is selected.
Capacity. This is an ideal element capable of maintaining constant internal
pressure.

3 Numerical simulation

Circuit simulation entails discretizing all the equations describing the compo-
nents. The space-time integration plane is also discretized (Figure 4). The aortic
tube is divided into n elements of equal length Ax, according to the desired spatial
definition. Two characteristic lines whose slope is given by equations (9) depart
from each point of the tube. Two of the characteristic lines converge at instant
Jj+1 in a nodal point where both equations (8) are valid. It is thus possible to
calculate the state variables at instant j+/ once those at instant j are known. The
values at instant j are calculated by linear interpolation between the values for
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adjacent nodal points. The time increment is A¢. In the sections delimiting the
tube (valve interface section / and capacity interface section n), there is only
one characteristic, i.e. C in section / and C* in section n. To calculate the state
variables in these sections, it is thus necessary to define the boundary conditions.
In section n, given that the reservoir guarantees a constant pressure, the boundary
condition is defined by the value of that pressure. In section /, the boundary
condition is defined by equation (10), which is obtained by equalizing the flow
through the valve [equation (2)] with the flow entering section /, and from cha-
racteristic equation C™ [equation (8) as indicated above]. Equation (10) is:

U, = ,(1—cosB)\ / &p'—p‘) (10)

Motion equation (3) gives angular acceleration 6 and, with successive inte-
grations, angular velocity § and angular position 8.

4 Calculation program

The flow-chart for the program is shown in Figure 5. The program is written in
GWBASIC and runs on personal computer. The time-dependent output which
can be calculated with this program include:
1) Pressure immediately downstream of valve.
2) Flow velocity through valve.
3) Extent of valve opening.
4) Angular velocity of mobile leaflet.
5) Angular acceleration of mobile leaflet.
Input data include:
1) Maximum cycle duration.
2) Valve outflow coefficient.
3) Leaflet radius.
4) Leaflet angle, velocity and angular acceleration at instant t=0.
5) Fluid density.
6) Friction coefficient.
7) Initial pressure and velocity.
8) Tube length.
9) Vessel compliance.
10) Tube discretization.
11) Integration interval Atr.
The large amount of input data which must be entered from keyboard was
necessary in order to achieve a certain flexibility for the program.

5 Results

The study was organized into two stages.
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In the first stage, the physiological data were established and tests were carried
out to determine the magnitudes of the simplified cardiovascular circuit which
make it equivalent to the actual circuit. Figures 6, 7, 8, 9 and 10 show pressure
downstream of the valve, flow velocity downstream of the valve, opening angle,
leaflet angular velocity and leaflet angular acceleration. The data used to obtain
these graphs are: maximum time = 0.8 s, outflow coefficient = 0.4, leaflet radius
=0.0125 m, leaflet density (assumed to be uniform) = 1500 kg/m’, initial angle,
angular velocity and angularacceleration = 0, fluid density = 1050 Kg/m’, friction
coefficient = 0.05, initial pressure = 11304 Pa, initial flow velocity =0, tube length
=0.11 m, and vessel compliance = 4.762 E-7 m/Pa.

These data resulted from the study conducted in the first stage, and reflect a
physiologically normal situation.

In the second stage, a number of the problem’s input parameters were varied,
to determine their influence on the valve’s dynamic behaviour.

By way of example, Figures 11, 12, 13, 14 and 15 respectively show curves
for valve downstream pressure, position, velocity and angular acceleration for
ventricular pressures of 1.5 times (solid line curves) and 0.8 times (dash-line
curves) the reference pressure. These two pressure levels were used to simulate
a heartbeat as produced under physical exertion, and one in a condition of rest.

For the case of exertion, more severe valve operating conditions are obtained.
Curves are similar to those for normal conditions, though the peaks increase.
Valve opening and closing take place earlier.

In the second case the peaks are lower, as are the dynamic stresses on the valve.

6 Conclusions

A numerical code for analyzing the dynamic behaviour of mechanical heart valve
prostheses was developed and validated. The program runs on personal computer.
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Figure 1:Circuit diagram. Figure2:Ventricular pressure.
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Figure 3:Valve schematics.
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The code provides effective support during valve design in as much as it makes
it possible to perform parametric studies, as well as during valve implantation, as
the performance of different valve types can thereby be compared.

The cardiovascular system developed as part of the investigation can be readily
extended to permit the study of a more complex downstream circuit.
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