Developing a BIM-based process-driven decision-making framework for sustainable building envelope design in the tropics

Y.-W. Lim¹, F. Shahsavari¹, N. Fazlenawati¹, M. N. Azli¹, D. R. Ossen¹ & M. H. Ahmad²
¹Department of Architecture, Faculty of Built Environment, Universiti Teknologi Malaysia, Malaysia
²Institute Sultan Iskandar, Universiti Teknologi Malaysia, Malaysia

Abstract

There is a rising concern for sustainability in the built environment. Therefore, numerous sustainable building certification and rating systems are developed throughout the world. However, the current methods of measuring, predicting, and optimising the sustainable building design have relied on a number of disjointed analyses to meet the discrete requirements for various building systems. The recent development of Building Information Modelling (BIM) technology allows complicated building modelling to be digitally constructed with precise geometry and accurate information to support various building project stages. Thereby, this study aims to integrate decision-making (DM) for sustainable building envelope design with BIM functionalities by considering the tropical climatic contexts in Malaysia. Several regional sustainable building certification systems and related literature were reviewed to identify the importance of evaluation and DM criteria. The findings were then compared with various BIM tools in terms of their applications, functions and workflows, in order to formulate a process-driven BIM-based DM framework (DMF) for sustainable building design in Malaysia. The proposed DMF will address the difficulties of DM in the early design development process, and will also allow for specific trade-off analyses of sustainability and objective-based optimisation using BIM.

Keywords: GreenBIM, design process, AEC industry, sustainable architecture, tropical.
1 Introduction

In the past 20 years, numerous certification and rating systems are available throughout the world for sustainable building, including LEED in US; BREEAM in UK; Green Mark in Singapore; and Green Star in Australia. Each of these systems requires different types of performance goals to evaluate and to benchmark the levels of green building revolution. Green Building Index (GBI) [1] and GreenRE [2] have been introduced to Malaysia in 2009 and 2013 respectively, both are sustainable building rating systems for non-residential new construction, residential new construction, and existing non-residential buildings. Some of the criteria in GBI and GreenRE actually used the benchmarks as stated in MS 1525 [3] such as overall thermal transfer value (OTTV) and roof thermal transfer value (RTTV).

The term ‘sustainability’ comprises a wide range of components: environmental quality, society well-being, and economic stability. These components often lead to conflict; therefore, it is very difficult to integrate these components into a single green rating [4]. However, the current design decision-making (DM) for sustainable buildings much depends on a number of disjointed analyses, to determine whether discrete requirements are best met with various building systems (e.g. HVAC, plumbing, lighting) or design features (e.g. landscaping, renewable energy generation, parking). Although many studies have pointed that the best opportunities for building sustainability improvement occurred in the early design or pre-construction stages, in the conventional architecture, engineering and construction (AEC) practice, surveys had found that the design DM for building sustainability occurred in the later stages [5, 6].

With the development of Building Information Modelling (BIM) technology, complex building modelling can be digitally constructed with both precise geometry and accurate information in order to support various project stages. Many researchers had stated the benefits of BIM in AEC industry such as accurate data environment, effective design process, accurate project cost estimation, time saving, and other benefits [7–11]. The additional functionality of BIM parametric modelling also allows conduct various analyses for design DM.

The applications of BIM for sustainable building design or GreenBIM model had been investigated widely recently. For instance, the data of BIM model can be utilised for green rating evaluation [12, 13]. BIM-based model can also be used for post-occupancy evaluation process [14, 15] and waste reduction of renovation projects [16]. Bank et al. [4] investigated the possibility of developing a decision-making (DM) framework for sustainable building design and operation by integrating BIM with System Dynamics. Kim et al. [13] aimed to develop Green BIM Template (GBT) for Green Building Certification Criteria (GBCC) in South Korea.

From the recent development on BIM-based sustainability or GreenBIM, it shows the importance of extracting data from BIM for sustainable building design DM. Hence, a decision-making framework (DMF) is needed to understand the extent and benefits of applying BIM in early stages of building...
design. A BIM-based DMF can give the designers a well-defined workflow to support the DM process using BIM based on regional sustainable building certification systems. Thereby, this study aims to integrate DM which comprises sustainable building envelope design and BIM functionalities with the consideration on the tropical climatic contexts in Malaysia. This study focuses on the early design or pre-construction stages which includes conceptual and schematic design as well as design development stages.

2 Methodology

Design DM for sustainable building envelope design is multifaceted; it requires energy consumption, PMV, daylighting, initial cost, and other aspects. DM is affected by many design variables such as window position, window-to-wall ratio, shading device geometry, type of glazing, wall material and so on. Therefore, DM for architectural optimal sustainable design involves searching for a multi-criteria optimal design solution set based on various sustainability indicators [4, 17, 18]. In this study, a BIM-based DMF for sustainable building envelope design was developed after considering certain aspects such as design process, sustainability indicators and functionality of BIM tools. Several regional sustainable building certification systems and related literature were reviewed to identify the importance of process and evaluation criteria for sustainable DM building envelope design. DM process and criteria then were compared and matched with BIM functionality and Level of Development (LOD). The finding of the study has established an objective-based process-driven DM framework (DMF) for sustainable building envelope design.

3 Development of BIM-based decision-making framework

3.1 Definition of sustainable design decision-making criteria

The review of several regional sustainable building certification systems and literature has highlighted the different DM criteria for sustainable building envelope design. All the criteria were then categorised according the different design variables: 1. Opening position, 2. Opening size, 3. Shading device, 4. Window glazing type, 5. Wall type and material, 6. Roof geometry, 7. Roof opening geometry, 8. Skylight geometry, 9. Skylight glazing, 10. Roof type and material. Different design variables require different sustainable design DM criteria by responding to the local climate. For instance, the position of window openings shall avoid facing east-west orientations in order to minimise direct solar heat gain; whereas the construction of building façade and roof shall maximise the use of regional and sustainable materials. The DM criteria and related references based on the various building envelope design variables are summarised in Table 1.
Table 1: Summary of sustainable building envelope design DM criteria.

<table>
<thead>
<tr>
<th>Design variable</th>
<th>Sustainable design DM criteria</th>
<th>References</th>
</tr>
</thead>
</table>
| V1- Opening position | • Minimise east-west facing opening to avoid direct sunlight
• Maximise north-south facing opening to capture prevailing wind
• Maximise north-south facing opening to receive sufficient daylight
• Provide good distribution of daylight | [2, 19–22]|
| V2- Opening size | • Minimise heat gain
• Assure each space has sufficient operable opening area (WFR) for ventilation
• Provide sufficient indoor air movement and air change
• Provide sufficient indoor illuminance
• Minimise daylight glare
• Use of shading device to control daylight quantity and quality
• Minimise daylight glare
• Use of PV as shading device | [1, 2, 19, 20, 22–31]|
| V3- Shading device | • Use of solar shading to shade east-west facing opening
• Optimise shading geometry
• Minimise OTTV1/ RETV2
• Minimise heat gain
• Use of shading device to control daylight quantity and quality
• Minimise daylight glare
• Use of PV as shading device | [1–3, 19–21, 24, 26, 31–45]|
| V4- Window glazing type | • Minimise OTTV1/ RETV2
• Minimise heat gain
• Provide sufficient indoor illuminance
• Minimise daylight glare | [1–3, 21, 24, 26, 28, 31, 33, 34, 41, 45–53]|
| V5- Wall type and material | • Minimise OTTV1/ RETV2
• Minimise heat gain
• Use of green wall to reduce heat gain
• Use of regional building material
• Use of sustainable building material | [1–3, 28, 30, 41, 47, 49, 50, 51, 53–56]|
| V6- Roof geometry | • Use of roof overhang to shade east-west facing façade
• Use of pitch angle to reduce incident solar heat gain (solar factor)
• Optimise roof area for PV | [1–3, 47, 50, 57]|
| V7- Roof opening geometry | • Use of roof opening or solar chimney for stack ventilation
• Provide sufficient indoor air movement and air change | [58, 59]|
| V8- Skylight geometry | • Shade the skylight from direct sunlight
• Orientate the skylight to face north-south orientations
• Provide sufficient indoor illuminance
• Provide good distribution of daylight | [52, 60, 61]|
| V9- Skylight glazing | • Minimise RTTV3
• Minimise heat gain
• Provide sufficient indoor illuminance | [1–3, 49, 52, 62–65]|
| V10- Roof type and material | • Use of thermal insulation to reduce heat gain
• Minimise RTTV3
• Minimise heat gain
• Use of regional building material
• Use of sustainable building material
• Use of green roof for cooling | [1–3, 41, 51]|

OTTV1 = applicable for buildings with AC area > 1000m2
RETV2 = applicable for residential building
RTTV3 = applicable for roof with skylight
3.2 Comparison of decision-making with Level of Development

Level of Development (LOD) in BIM had been defined by various previous studies in order to standardise the precision and suitability of a BIM for specific uses. LOD describes the steps of a BIM element to progress logically from the lowest level of conceptual approximation to the highest level of representational precision, which allows practitioners in AEC industry to articulate the content of a BIM at various project stages (Bedrick [66], BIMForum [67], Wood et al. [68]). In general, the LOD are defined as: 100 for conceptual design; 200 for schematic design with approximate geometry; 300 for developed design with precise geometry; 350 for tender and coordination; 400 for construction and fabrication; and 500 for as-built.

A BIM-based sustainable building envelope design DM needs to be process-driven according to BIM workflow. Therefore, the sustainable building envelope design DM process was defined by comparing the design variables with the BIM LOD. This study only focuses on conceptual or schematic design and design development stage of a project, thus LOD 100, 200 and 300 can only be selected for the comparison. The match-up of the design process with the selected BIM LOD is presented in Table 2.

Table 2: Match up of design process with BIM LOD 100 to LOD 300.

<table>
<thead>
<tr>
<th>LOD</th>
<th>Model content requirement [66–68]</th>
<th>Design variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Non-geometric data, symbol or line work, area, height, volume, zone, location, orientation or other generic representation.</td>
<td>V1, V6, V7</td>
</tr>
<tr>
<td>200</td>
<td>Generic elements or assembly shown in three dimensions, with approximate quantities, size, shape, location, and orientation. Non-graphic information may also be attached to the elements.</td>
<td>V2, V3, V8</td>
</tr>
<tr>
<td>300</td>
<td>Specific system, object or assembly in terms of quantity, size, shape, location, and orientation. Non-graphic information may also be attached to the elements.</td>
<td>V4, V5, V9, V10</td>
</tr>
</tbody>
</table>

3.3 Formulation of BIM-based process-driven DMF

Based on the sustainable building envelope design DM criteria and the match-up with BIM LOD, a BIM-based process-driven DM framework (DMF) for sustainable building envelope design was formulated. Table 3 represents the BIM-based DMF for building façade and roof design according to schematic or conceptual design (LOD 100 and 200) and design development (LOD 300) stages.

Objective functions were determined for every design variables based on the DM criteria as defined in Table 1. For instance, to minimise the percentage of east-west facing window areas over total east-west facing façade areas is one of
Table 3: Integrated BIM and objective-based process-driven decision-making framework for sustainable building envelope design in Malaysia.

<table>
<thead>
<tr>
<th>Design Element Category</th>
<th>Schematic / Conceptual Design [LOD 100, 200]</th>
<th>Project Stage</th>
<th>Design Development [LOD 300]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design Variable</td>
<td>Strategy</td>
<td>Objective Function</td>
</tr>
<tr>
<td></td>
<td>Window size [WWR]</td>
<td>Solar Shading</td>
<td>% of E-W facing window areas over total E-W facing facade areas</td>
</tr>
<tr>
<td></td>
<td>Window position</td>
<td>Solar Shading</td>
<td>% of E-W facing window areas with sun shading devices over total E-W facing facade areas</td>
</tr>
<tr>
<td>Façade</td>
<td>Shading device geometry</td>
<td>Natural Ventilation</td>
<td>WWR of Shading Device</td>
</tr>
<tr>
<td></td>
<td>Type of Void</td>
<td>Natural Ventilation</td>
<td>% of spaces with window opening facing N-S directions for cross ventilation</td>
</tr>
<tr>
<td>Daylighting</td>
<td>Natural Ventilation</td>
<td>% of % S-facing window areas over total % S-facing facade areas</td>
<td>The higher the better</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Natural Ventilation</td>
<td>% of green wall area over total wall area (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Solar Shading</td>
<td>% of green wall area over total wall area (if applicable)</td>
</tr>
<tr>
<td>Roof</td>
<td>Solar Shading</td>
<td>Roof material (U-value)</td>
<td>Solar Shading</td>
</tr>
<tr>
<td></td>
<td>Opening geometry</td>
<td>Natural Ventilation</td>
<td>% of E-W facing facade areas shaded by roof over total E-W facing facade areas</td>
</tr>
<tr>
<td></td>
<td>Skylight geometry</td>
<td>Natural Ventilation</td>
<td>% of spaces with roof opening / solar chimney for stack ventilation (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Skylight glassing [VT, U-value, SC]</td>
<td>Natural Ventilation</td>
<td>% of roofs with (shaded) skylight area over total skylight area (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Opening geometry</td>
<td>Solar PVT (SF) of the roof</td>
<td>The lower the better</td>
</tr>
<tr>
<td></td>
<td>Skylight geometry</td>
<td>Natural Ventilation</td>
<td>% of roofs shaded by skylights (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Solar Shading</td>
<td>Solar Shading</td>
<td>Opening geometry</td>
</tr>
<tr>
<td></td>
<td>Skylight geometry</td>
<td>Natural Ventilation</td>
<td>% of skylight facing areas over total skylight areas</td>
</tr>
<tr>
<td></td>
<td>Skylight geometry</td>
<td>Natural Ventilation</td>
<td>% of green roof area over total roof area (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Skylight glassing [VT, U-value, SC]</td>
<td>Natural Ventilation</td>
<td>% of roof area optimised for PV (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Roof type</td>
<td>Natural Ventilation</td>
<td>% of roof area with (light weight) or ≥ 0.6 W/m² (heavy weight) over total roof area</td>
</tr>
<tr>
<td></td>
<td>Roof geometry</td>
<td>Natural Ventilation</td>
<td>% of roof area with U-value ≤ 0.4 W/m²k (light weight) or ≤ 0.6 W/m²k (heavy weight) over total roof area</td>
</tr>
<tr>
<td></td>
<td>Skylight geometry</td>
<td>Natural Ventilation</td>
<td>% of roof area with (light weight) or ≥ 0.6 W/m² (heavy weight) over total roof area</td>
</tr>
<tr>
<td></td>
<td>Solar Shading</td>
<td>Solar Shading</td>
<td>Opening geometry</td>
</tr>
<tr>
<td></td>
<td>Skylight glassing [VT, U-value, SC]</td>
<td>Natural Ventilation</td>
<td>% of roof area with (light weight) or ≥ 0.6 W/m² (heavy weight) over total roof area</td>
</tr>
</tbody>
</table>
the objective functions to avoid direct solar radiation heat gain in the tropics. Besides, related BIM functionalities or tools for every DM were determined based on the review of various BIM software such as Autodesk Revit, Integrated Environmental Solutions <Virtual Environment> (IES <VE>), Autodesk Ecotect Analysis, Design Builder and so on.

4 Conclusion

This study integrates DM for sustainable building envelope design and BIM functionalities with special reference to the tropical climatic contexts in Malaysia. Several regional sustainable building certification systems and related literature were reviewed to determine the importance of DM criteria. The objective-based DMF was defined based on BIM LOD and relevant BIM functionalities. It addresses the difficulties of DM in early design process, and allows for specific sustainability trade-off analyses and optimisation to be conducted using BIM. This study can be further developed as a BIM-based DM and optimisation tool.

Acknowledgement

The authors would like to acknowledge the research funding by Ministry of Education Malaysia (MOE) through Fundamental Research Grant Scheme (FRGS) Vote 4F665, titled “BIM-GBI Model Development: Integrating Building Information Modelling and Green Building Certification in Malaysia”.

References

