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Abstract

Unsteady coupled air, moisture and heat energy flow through a porous solid is
simulated numerically using a boundary element model (BEM). The governing
transport equations are written and solved for the continuous driving potentials,
i.e. relative humidity, temperature and air pressure. The moisture redistribution
inside a wall with capillary active interior insulation is analysed to illustrate the
applicability and accuracy of the proposed numerical model.
Keywords: boundary element method, heat and moisture transport, multilayered
porous solid.

1 Introduction

Exterior building elements are exposed simultaneously to differences in
temperature, moisture and air pressure, which have a major impact on the
sustainability of the building. In this paper, the three-coupled transient HAM
transport equations are solved using a boundary element numerical model
(BEM) [9]. The singular boundary-domain integral representations of the basic
conservation differential laws are based on the use of an appropriate fundamental
solution that incorporates some of the physics of the transport phenomenon, such
as accumulation and diffusion of the field function. However, the BEM leads to
a fully populated system of equations. This can be efficiently overcome by the
subdomain or macro element approach, which yields a sparse system similar to the
domain type numerical models [7], while maintaining the accuracy and stability of
the numerical algorithm. The discretization used in this paper leads to an over-
determined system of equations [12, 13].
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Next, the problem is briefly described. The relevant governing differential
equations for energy, moisture and air transport are considered and formulated
for the continuous driving potentials, i.e. relative humidity, temperature and air
pressure. The corresponding singular integral representations are then developed,
describing nonlinear heat, moisture and air transport in an integral form. One test
benchmark example involving the moisture redistribution inside a multilayered
porous wall with capillary active interior insulation, is given to illustrate the
efficiency and accuracy of the proposed solution strategy [2, 3].

2 Governing equations for a two-phase system

Consider a two-component, two-phase thermodynamic system in a solution
domain Ω bounded by a control surface Γ, where the indices w, a and m represent
the water, air and dry porous material, and the indices l and v represent the two
water phases. That is, l refers to the liquid water and v to the vapour water in a
liquid/vapour moisture system.

2.1 Moisture transport equation

After some matematical manipulations the following moisture transport equation
[1, 2] can be formulated

θ
∂ϕ

∂t
= �∇ ·

(
Dϕ

�∇ϕ+DT
�∇T − 1

Rw

ps
T
�vϕ−Dlρl�g

)
, (1)

where θ = dW/dϕ is the slope of the sorption isotherm W = W (ϕ). The
primitive variable in eq. (1) is the relative humidity field function ϕ(rj , t),
while the second, third and fourth terms on the right side of equation act as
nonhomogeneous nonlinear source terms due to temperature gradient, vapour
convection and gravity force. Note that, due to the second and third terms, eq. (1)
is explicitly coupled to the heat energy transport equation and pressure equation.
The transport coefficients Dϕ and DT are given as:

Dϕ = δpps +DlRwρl
T

ϕ
and DT = δp

dps
dT

ϕ+DlRwρl ln(ϕ), (2)

where the transport properties δp and Dl stand for the vapour and liquid
permeability of a solid material [14].

2.2 Heat energy transport equation

The heat energy balance equation considers accumulation within the control
volume, energy flux (sensitive, latent and convective), in and out of the
control volume and heat source/sink term [1–3], which leads to

ceff
∂T

∂t
= �∇ ·

[
λeff

�∇T − hlat�nv − ρa (cpa + ωcpv)�v T
]
+ I, (3)
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where the primitive variable in eq. (3) is the temperature field T (rj , t), whilst the
coefficient ceff = ρmcp,eff is the effective specific heat per unit volume.

2.3 Airflow dynamic equations

The elliptic Poisson pressure equation governs the airflow through a porous solid
is given by

∂

∂xj

(
δa

∂p

∂xj

)
= 0 and ρavj = −δa

∂p

∂xj
, (4)

with δa is the air permeability of a solid matrix, where the time dependence of the
two field functions, velocity and pressure, account for the effect of time dependent
pressure boundary conditions.

2.4 Initial and boundary conditions

The initial conditions in general represent the distribution of field functions in the
solution domain and their normal derivatives on the boundary and are given by
the relations

ϕ = ϕ, T = T and p = p in Ω at t = to,
∂ϕ

∂n
=

∂ϕ

∂n
and

∂T

∂n
=

∂T

∂n
on Γ for t = to. (5)

As a rule, the heat and moisture exchange between a solid wall surface and its
surrounding can be prescribed by the boundary conditions of the first, second and
third kind on the parts of the boundary Γ1, Γ2 and Γ3, respectively, such that the
solution boundary Γ = Γ1 + Γ2 + Γ3.

The boundary conditions of the first or Dirichlet kind, where surface conditions
are the same as the ambient conditions, are given by the known surface value of
the driving potentials:

T = T and ϕ = ϕ on Γ1 for t > to, (6)

and this condition can be applied when the building component is in contact with
water or earth. In the case of liquid transport, this applies when the component
surface is completely wetted by rain or ground water.

Boundary conditions of the second or Neumann type require knowledge of heat
or mass flow at the surface and are given by the prescribed surface temperature
and relative humidity normal derivative values, respectively:

∂T

∂n
=

∂T

∂n
and

∂ϕ

∂n
=

∂ϕ

∂n
on Γ2 for t > to, (7)

Symmetry conditions and adiabatic or moisture-tight conditions are given by the
zero flux condition.
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Boundary conditions of the third or Cauchy type are the most frequent kind of
heat and moisture transfer between the component surface and the ambient. Special
compatibility and restriction conditions must be satisfied at the boundary surfaces
of the heat and moisture transfer region. There must be an energy and moisture
balance between the heat/moisture flow within the solid to/from the surface, and
the heat/moisture that is leaving/entering the surface.

Let us first consider vapour transfer. The normal total vapour flux nv = �nv ·�n =
(�jv +�jv,conv) ·�n flowing within the solid from the surface must be equal to vapour
transfer from the ambient, denoted by the index a, to the solid surface given by the
constitutive model as follows:

−nv = δp
∂pv
∂n

− jv,conv = βp(pv,a − pv)− jv,conv,a on Γ3 for t > to, (8)

where the quantities βp and pv,a are the vapour transfer coefficient and ambient
vapour pressure, respectively. Eq. (8) can be transformed using relative humidity
and the temperature as driving potentials as follows:

−nv = δpps
∂ϕ

∂n
+ δp

dps
dT

∂T

∂n
ϕ− jv,conv = βp(pv,a − ϕps)− jv,conv,a, (9)

yielding an expression for the relative humidity normal derivative

∂ϕ

∂n
= −

(
βp

δp
+

1

ps

dps
dT

∂T

∂n

)
ϕ+

βp

δp

pv,a
ps

+
1

δpps
(jv,conv − jv,conv,a). (10)

Based on eq. (10) one may conclude, that in all outflow surfaces vapour convective
fluxes cancelled each other, jv,conv = jv,conv,a.

Heat transfer can be treated in the same way. The normal total heat flux
q = �q · �n = (�qsens + �qlat + �qconv) · �n flowing within the solid from the surface
must be equal to the heat inflow from the ambient to the solid surface given by the
following constitutive model

−q = α(Ta − T )− hlat,anv − qconv,a + qsol on Γ3 for t > to, (11)

where the ambient temperature is denoted by Ta and the heat transfer coefficient is
given by summing the convective and radiation parts α = αcon + αrad. The term
qsol represents heat flow from short-wave solar radiation. Substituting the equation
for the sensible heat flow into eq. (11) gives

−q = λeff
∂T

∂n
− hlatnv − qconv

= α(Ta − T )− hlat,anv − qconv,a + qsol, (12)

yielding an expression for the temperature normal derivative

∂T

∂n
=

α

λeff
(Ta − T ) +

1

λeff
[qsol + (hlat − hlat,a)nv

+(qconv − qconv,a)]. (13)
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Again, one may conclude, that on all outflow boundaries, the latent and convective
fluxes cancelled each other.

The Dirichlet and Neumann boundary conditions for the pressure equation may
be determined for the solution boundary and the following relations are valid

p = p on Γ1 and
∂p

∂n
=

∂p

∂n
= −ρa

δa
vn on Γ2, (14)

where vn = �v · �n is the normal velocity component.

2.5 Interface conditions

The chosen driving potentials for heat and moisture transport in porous media,
the relative humidity ϕ, the vapour pressure pv and temperature T are continuous
field functions at the contact between the two porous materials, therefore the
compatibility conditions give us the equalities

T (1) ≡ T (2) ≡ T (I) and ϕ(1) ≡ ϕ(2) ≡ ϕ(I) on ΓI . (15)

The energy and moisture equilibrium conditions at the interface ΓI between
Ω1 and Ω2 are given by continuous energy flow �q = �qsens + �qlat and continuous
moisture flow�j = �jv+�jl across the interface, respectively. The energy equilibrium
conditions across the interface can therefore be stated as

(�qsens + �qlat)
(1) · �n(1) ≡ −(�qsens + �qlat)

(2) · �n(2) on ΓI , (16)

or, in the extended form for the temperature normal derivative (∂T/∂n)(2)

(
∂T

∂n

)(2)

= −λ
(1)
eff

λ
(2)
eff

(
∂T

∂n

)(1)

+
1

λ
(2)
eff

[
(�qlat · �n) (1) + (�qlat · �n) (2)

]
(17)

and the moisture equilibrium conditions across the interface can be written in
likewise

(�jv +�jl)
(1) · �n(1) ≡ −(�jv +�jl)

(2) · �n(2) on ΓI , (18)

or, in extended expression for the relative humidity normal derivative

(
∂ϕ

∂n

)(2)

= −D
(1)
ϕ

D
(2)
ϕ

(
∂ϕ

∂n

)(1)

− 1

D
(2)
ϕ

[(
DT

∂T

∂n

)(1)

+

(
DT

∂T

∂n

)(2)
]
. (19)

The air flow interface conditions can be given by the following compatibility
and equilibrium conditions

p(1) ≡ p(2) ≡ p(I) and δa
(1)

(
∂p

∂n

)(1)

≡ −δa
(2)

(
∂p

∂n

)(2)

on ΓI . (20)
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3 Boundary element numerical model

3.1 Integral representation for energy and moisture transport equations

The differential energy and moisture conservation models written for the primitive
field function temperature and relative humidity, respectively, can be written in the
following general form [7–9]

L [u ] +
∂bj
∂xj

+ b = ao
∂u2

∂xj∂xj
− ∂u

∂t
+

∂bj
∂xj

+ b = 0, (21)

where the notation L [ · ] stands for the parabolic diffusion linear operator, u (rj , t)
is an arbitrary field function, and the terms bj (rj , t) and b (rj , t) represent
nonhomogeneous or source effects due to the nonlinear transport coefficients,
convection and production of the conservative field function, respectively, with
the following corresponding integral representation [6] written for a time step
Δt = tF − tF−1

c (ξ) u (ξ, tF ) + ao

∫
Γ

tF∫
tF−1

uq�dtdΓ =

∫
Γ

tF∫
tF−1

(aoqj + bj)nju
�dtdΓ

−
∫
Ω

tF∫
tF−1

bjq
�
j dtdΩ+

∫
Ω

tF∫
tF−1

bu�dtdΩ +

∫
Ω

ui,F−1u
�
F−1dΩ, (22)

where q = ∂u/∂n = qjnj and u�(ξ, s; tF , t) are the field function normal flux
and the parabolic diffusion fundamental solution [8], where s is an arbitrary field
point in the solution domain or on the boundary, respectively, and ξ is the source
point. The nonhomogeneous terms bj and b are given by the following relations,
i.e. for the energy transport

bj =
1

co

[
λ̃
∂T

∂xj
− hlatnvj −

(
ρacpa +

cpv
Rw

ps
T
ϕ

)
vjT

]
,

b = − c̃

co

∂T

∂t
+

I

co
, (23)

with ceff = co+ c̃, λeff = λo+ λ̃ and ao = λo/co, and for the moisture transport

bj =
1

θo

(
D̃ϕ

∂ϕ

∂xj
+DT

∂T

∂xj
−Dlρlgj − 1

Rw

ps
T
vjϕ

)
, b = − θ̃

θo

∂ϕ

∂t
, (24)

and θ = θo + θ̃, Dϕ = Dϕ,o + D̃ϕ and ao = Dϕ,o/θo.
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3.2 Integral representation for air dynamics

Employing the linear elliptic Laplace differential operator, the following relation
may be considered for the pressure eq. (4)

L [ p ] +
∂bj
∂xj

=
∂2p

∂xj∂xj
+

∂bj
∂xj

= 0, (25)

with the corresponding boundary-domain integral representation

c (ξ) p (ξ) +

∫
Γ

pq�dΓ =

∫
Γ

∂p

∂n
u�dΓ +

∫
Γ

bjnju
�dΓ−

∫
Ω

bjq
�
j dΩ, (26)

where u�(ξ, s) is the elliptic Laplace fundamental solution [9], whilst the
nonhomogeneous nonlinear term bj is given by the expression

bj =
δ̃a
δao

∂p

∂xj
, (27)

and δa = δao + δ̃a. For the constant air permeability δa, the pseudo force term
bj ≡ 0, and the pressure field is given by the linear Laplace equation represented
by the first two boudary integrals in eq. (26).

3.3 Discretized equations

For the numerical solution of eq. (22), the boundaryΓ is discretized into a series of
boundary elements and the domain Ω is discretized into a series of internal cells.
Furthermore, field functions and their derivatives are assumed to vary within each
element or cell and each time step according to the space {Φ} or {φ} and time
{Ψ} interpolation functions such that

u(S, t) = {Φ}T{Ψ}{u}nm, q(S, t) = {Φ}T {Ψ} {q}nm ,

bj(S, t) = {Φ}T{Ψ}{bj}nm, bj(s, t) = {φ}T {Ψ}{bj}nm, etc., (28)

where index n refers to the number of nodes within each element or cell, and the
index m refers to the degree of variation of the function {Ψ}. Assuming linear
variation of all functions within the individual time increment τ = tF − tF−1, i.e.
m = 1, 2 and

Ψ1 =
tF − t

τ
and Ψ2 =

t− tF−1

τ
, (29)

the analytical expressions for the time integrals

U�
m = ao

tF∫
tF−1

Ψmu�dt, Q�
m = ao

tF∫
tF−1

Ψmq�dt, (30)
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can be derived [14] and eq. (22) can be rewritten as

c (ξ)u2 (ξ) +
2∑

m=1

E∑
e=1

[ ∫
Γe

{Φ}TQ�
mdΓ

]
{u}nm =

2∑
m=1

E∑
e=1

[ ∫
Γe

{Φ}TU�
mdΓ

]
{q}nm

+

2∑
m=1

E∑
e=1

[ ∫
Γe

{Φ}TU�
mnjdΓ

]{ bj
ao

}n

m

−
2∑

m=1

C∑
c=1

[ ∫
Ωc

{φ}TQ�
jmdΩ

]{ bj
ao

}n

m

+
2∑

m=1

C∑
c=1

[ ∫
Ωc

{φ}TU�
mdΩ

]{ b

ao

}n

m

+
C∑

c=1

[ ∫
Ωc

{φ}Tu�
F−1dΩ

]
{u}nF−1, (31)

where the symbols E and C denote the number of boundary elements and internal
cells, respectively.

4 Numerical algorithm

When dealing with nonlinear transport problems the subdomain technique must
be used to apply different constant diffusivities to each subdomain. The second
reason for applying the subdomain or multidomain model is to cut the storage and
CPU time requirements of the single domain BEM approach [5, 7, 13]. The heat
energy, moisture and pressure governing equations represent a coupled nonlinear
systems of equations that can only be solved iteratively.

5 Numerical example

The benchmark test example [15] deals with the moisture redistribution inside a
nonhomogeneous multilayered wall Lx = 0.420m thick and Ly = 0.001m tall
with capillary-active interior insulation. The wall consists of three layers: brick
δb = 0.365m, mortar δm = 0.015m and insulating material δi = 0.040m,
shown in fig. 1. The multilayerd structure is airtight. Thermal conductivity of the
brick and the insulating material differs by a factor of 11 in dry conditions. Initial
temperature and relative humidity conditions are both constant all over the wall.
At time zero there is a sudden change in temperature and vapour pressure on either
side of the wall. The simulation time is 60 days.

The initial hygrothermal conditions of the structure were temperature To =
25oC, relative humidity ϕo = 0.60. The following boundary conditions of the
third kind could be prescribed on the left boundary at x = 0m and 0 ≤ y ≤ Ly

Ta,e = 0.0 oC and αe = 25.00
W

m2K
for t > 0

ϕa,e = 0.8 and βp,e = 1.8382 · 10−7 s

m
for t > 0,

(32)
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Ta,e

ϕa,e

αe

βp,e

Ta,i

ϕa,i

αi

βp,i

0

y[m]

Ly

x[m]

Lx

T0

ϕ0

M I

∂T
∂n = ∂ϕ

∂n = 0

∂T
∂n = ∂ϕ

∂n = 0

B

Figure 1: Capillary-active inside insulation: outline of the structure, initial and
boundary conditions; Lx = 0.420m, Ly = 0.001m, δb = 0.365m,
δm = 0.015m, δi = 0.040m; simulation time 60 days

on the right boundary at x = Lx and 0 ≤ y ≤ Ly

Ta,i = 20.0 oC and αi = 8.00
W

m2K
for t > 0

ϕa,i = 0.6 and βp,i = 5.8823 · 10−8 s

m
for t > 0,

(33)

and zero boundary conditions of the second kind were prescribed on all other
boundaries

∂ϕ

∂n
= 0 and

∂T

∂n
= 0 for t > 0. (34)

The initial conditions were

ϕo = 0.6 and To = 25oC at t = 0. (35)

All the transport and materials properties for all three layers are taken from [15]
and are given by the following expressions.

The sorption isotherms were given by an expression

W (ϕ) = Wsat

2∑
i=1

ki
[1 + (aih)ni ]mi

, h =
psuc
ρlg

= −RwT ln(ϕ)

g
, (36)
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with the exponent mi = 1−1/ni. The expressions for vapour permeability δp and
liquid water permeability Dl transport coefficients were given by the expressions

δp(W,T ) =
Dva

μRwT

1− W
Wsat

(1− p)
(
1− W

Wsat

)2

+ p
, (37)

Dl(W ) = exp

[
5∑

i=0

ai

(
W

ρl

)i
]
, (38)

and the relations for the effective thermal conductivity and specific heat per volume
for dry material, respectively, were given by the relationships

λeff = λm + λmst
W

ρl
and cpmρm = cm. (39)

Uniform equidistant numerical model of M840 × 1 macro-elements was
considered (0.5mm). The time dependent analysis was performed by running the
simulation time from the initial state with a time step value of Δ = 36000, 3600,
360s. The conergence criterion was set to ε = 10−8, and the under-relaxation
parameter was set tu ur = 0.5 for the field functions and the transport properties.

The objective was to calculate the moisture and temperature distributions after
t = 60days. Grid and time step dependency of the numerical solution was
investigated. The moisture distributions between the inside insulation and the
mortar layer after 60 days are shown in fig. 2. Solution results for all three time
step values match closely with each other and with the other results [15].

x [m]

W
[k

g/
m

3]

0 0.1 0.2 0.3 0.40

10

20

30

40

50

60

70 brick
insulation

mortar

Figure 2: Moisture content profile of the inside insulation and the mortar layer after
60 days. Solution results for all three time step values match closely with
each other.

258  Boundary Elements and Other Mesh Reduction Methods XXXVIII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



6 Conclusions

The boundary element method has been formulated and implemented to solve the
two-dimensional time dependent coupled nonlinear heat, moisture and air flow
through a porous solid. Quadratic basis functions were used to approximate the
field functions and constant interpolation for fluxes, and the linear variation of all
functions over each individual time step was assumed.

One one-dimensional benchmark consisting of moisture redistribution inside a
wall with capillary-active interior insulation, was analysed. The good agreement
obtained with the respective test case suggests that the simulation model based on
a BEM numerical technique can be used to simulate the hygrothermal performance
of building envelope components.
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