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Abstract 

In this work, the variational multiscale element free Galerkin method is used for 
the solution of incompressible generalized Newtonian fluid flow. In order to 
correct the lack of stability of the standard Galerkin formulation of the Navier-
Stokes equations, the velocity field is decomposed into coarse and fine scales 
first, and then a model for the fine scale velocity is introduced, in the process, the 
stabilization parameter has appeared naturally via the solution of the fine scale 
problem. From the viewpoint of the application, the presented method can 
employ an equal order basis for pressure and velocity that is easy to implement 
but avoid the restriction of the Babuska-Brezzi condition. Two benchmark 
problems named Poiseuille flow and lid-driven cavity flow for the power-law are 
solved and the numerical results confirm that this method has better stability and 
accuracy. 
Keywords: variational multiscale, generalized Newtonian fluid, power-law fluid, 
element free Galerkin method. 

1 Introduction 

Meshless methods are very efficient for solving the practical engineering 
problems because they rely only on a set of scattered nodes in the problem 
domain, which can not only enable them to eliminate at least part of the 
difficulties existing in FEM, but also describe more accurately the irregular 
geometries. A detailed review on the meshless methods has been provided by 
Nguyen et al. [1] and Liu and Gu [2]. Recently many meshless methods have 
been proposed and applied to computational fluid dynamics [3–14].  
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     It is well known that the one of main issues germane to the development of a 
successful solver for incompressible Navier-Stokes equations is proper treatment 
of incompressibility. Improper treatments may result in spurious oscillations for 
velocity or pressure solutions. For meshless methods based on Galerkin 
formulations, the same problems will arise from the treatment of 
incompressiblility constraint [6, 8], that is, they must be either satisfy or avoid 
the Babuska-Brezzi condition. In order to eliminate numerical instability due to 
the improper coupling of velocity and pressure, some stabilized techniques 
which frequently used in the finite element context were directly extended to 
meshless method [3–9]. However, these methods are related to a stabilization 
parameter and it depends on the problem under consideration and the chosen 
numerical method. In other words, there was no effective theoretical framework 
to solve the stabilized factor or stabilized functions which are closely connecting 
with the accuracy and reliability for numerical method. In order to overcome this 
problem, Zhang et al. developed variational multiscale element free Galerkin 
(VMEFG) method for the solution of Stokes problem [10]. VMEFG method 
inherits the advantages of the VMFEM, that is, it allows equal order basis for 
pressure and velocity and the stabilized parameter appear naturally. 
Subsequently, Zhang et al. applied VMEFG to simulate the water wave problems 
[11] and MHD flow problems [12]. To the best of our knowledge, there are few 
published results when meshless method is used to non-Newtonian fluid flow 
problems and meshless method for the simulation of non-Newtonian are usually 
applied in collocation sets [13, 14]. Although meshless collocation methods do 
not need background quadrature mesh and make the computation efficient, they 
may suffer from the accuracy and stability problems. Therefore, in the present 
study VMEFG method is extended to the solution of incompressible generalized 
Newtonian fluid flow. 
     An outline of the paper is as follow. In section 2, a brief description of the 
rheological properties of power-law fluids is given. In section 3, the fundamental 
principle of EFG method is briefly described. Then, the VMEFG method for the 
Stokes fluid flow is expressed. In section 5, Poiseuille flow and lid-driven cavity 
flow of a power-law fluid at low Reynolds numbers are solved as two benchmark 
problems and the results are compared with analytical solutions or the available 
numerical data. The article ends with concluding remarks in section 6. 

2 Governing equations 

2.1 Conservation equations 

The governing equations for simulating the two-dimensional incompressible 
flow of generalized Newtonian fluid are written in a dimensionless form as 
 0 u  (1) 
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where ( , )u v u is the fluid velocity, p is the pressure, F is body force that 

drives fluid and τ is shear stress tensor, Re is the Reynolds number. The above 
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equations are written in general form and are applicable to both Newtonian and 
non-Newtonian flows. 

2.2 Rheology 

For engineering applications, the power-law model is commonly used for 
modelling shear-thinning or shear-thickening behaviour of non-Newtonian 
fluids. The shear-stress tensor in the power-law is expressed by 
 2ij ijτ γ  (3) 

where 
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x x
with iu being the velocity component in ix direction, 

 is the generalized Newtonian viscosity which depends on the local shear rate. 

In Newtonian fluid   is constant for the entire flow field and for power-law 

model non-Newtonian viscosity is given by  
 1

0
n   γ  (4) 

where 0 a constant relative to the properties of the fluid and n is the exponent 

according to which shear thinning or shear thickening behavior is regarded when 
1n  or 1n  , respectively. In the special case of 1n  , the model reduces to the 

one-parameter Newtonian case. The strain-rate tensor is obtained by 

 2 ij ijγ γ γ  (5) 

     Using constitutive equations, Eq. (2) will be 
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3 Review of the element free Galerkin method  

In the EFG method, the field variable u(x) is approximated by moving least 
squares (MLS) approximation, which consists of three parts: a basis function, a 
group of nonconstant coefficients and a weight function associated with each 
node. According to the MLS approximation, the unknown function u(x) can be 
written as follows [2]:  

 1

( ) ( ) ( ) ( ) ( ) ( )
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j j

j

u u p a 
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  x x x x P x a x
 

(7) 

where P(x) is a complete polynomial basis of order m and a(x) is a vector of 
coefficients (to be determined) which is a function of the space coordinate x.  
     Assume that we have known the nodal value ( )i iu u x for the function ( )u x at 

n nodes in the domain . Then the unknown coefficients a(x) in Eq. (7) at any 
given point x are determined by minimizing the functional J: 
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  J x x P x a x  (8) 
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Here n is the number of nodes in the support domain of x in which the weigh 
function w(x − xi)>0. The cubic spline weight function has been used in this 
work, which is given as: 

 

2 32
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 (9) 

where /i id d r , i id  x x is the distance between point x and node ix , ri is 

the radius of the influence domain for node ix . Generally, i ir  where is the 

dimensionless size of influence domain and i is the distance between two 

adjacent nodes.  
     Minimization of Eq. (8) with respect to a(x) then yields the following system 
of linear equations for the vector a(x): 

 ( ) ( ) ( )A x a x B x u  (10) 

where u is the vector of nodal unknowns, matrices A(x) and B(x) are defined as 

 1

( ) ( ) ( ) ( )
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i i i
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 A x x P x P x  (11) 

 1 1 2 2( ) [ ( ) ( ), ( ) ( ), , ( ) ( )]n nw w wB x x P x x P x x P x  (12) 

     If A is invertible, solving Eq. (10) and then substituting a(x) back into Eq. (7), 
the MLS approximant can be defined as 

 
1( ) ( ) ( ) ( ) ( )hu    x P x A x B x u N x u  (13) 

where N(x) is the vector of MLS shape functions. Please refer to the book of Liu 
and Gu [2] in detail. 
     In general, the use of the MLS approximation produces shape functions that 
do not possess the Kronecker Delta condition property, i.e., ( ) .i j ijN x Thus, 

essential boundary conditions cannot be imposed as easily as that in the standard 
FEM. Until now, the implementation of essential boundary conditions is still an 
open research topic for meshless methods. In the paper, a simple technique 
proposed by Zhang et al. [11, 12] is utilized, which makes MLS approximation 
function possess interpolation property as approach to 1 and is easier to solve 
problems with complex area.  

4 The variational multiscale element free Galerkin method 

The VMEFG method essentially contains three steps for the simulation of 
incompressible fluid flow. In the first step, the velocity field is decomposed into 
coarse scale and fine scale. In the second step, it uses bubble function to 
determine fine scale solution analytically. In the third step, substitutes the fine 
scale solution into coarse scale problem and then obtains the coarse scale 
solution numerically. In the following, the brief introduction of VMEFG is 
presented and more details about the VMEFG can refer to [10, 11]. 
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4.1 The standard weak form 

Let w and q represent the weight functions for velocity u and pressure p 
respectively, then based on the Galerkin formulation, the standard weak form of 
the problem Eqs. (1) and (6) is given as follows 

 
1

( , ) ( , ) ( , ) ( , )
Re

p      w u u w u w w F  (14) 

 ( , ) 0q  u  (15) 

where ( , ) ( )d


     . 

4.2 The decomposition of the standard weak form 

Assume that the velocity u and its weight function w  can be decomposed into 
coarse scale and fine scale respectively, namely ˆ u u u and ˆ w w w ,where 
u and û  are the coarse scale and fine scale for velocity u , w and ŵ  are the 
coarse scale and fine scale for weight function w , respectively. Meanwhile, we 
assume there exists a linearity between coarse scale and fine scale [10]. We 
further assume that û and ŵ  although non-zero within background integral cell

K , vanish identically over the K  boundaries when influence factor   
approaches to 1. 
     Substituting ˆ u u u  and ˆ w w w  into the standard variational form 
Eqs. (14)–(15), then employing the linearity between coarse scale w and fine 

scale ŵ , meanwhile using the converged solution cu at the last time to linearize 
the nonlinear convective coefficient, Eq. (14) can be split into coarse scale 

problem W  and fine scale problem Ŵ  as follows: 
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4.3 The solution of the fine scale problem 

In general, according to [10], we solve the fine scale problem Eq. (17) first to 
obtain the fine scale solution û . In order to obtain fine scale solution û  

analytically from Ŵ , using the bubble function in each K , and finally we can 

obtain the fine scale solution û over the K  as follows: 
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1
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Re
c p      r F u u u  (21) 

Here, I is a nd nd  identity matrix, both 1
Kb and 2

Kb are 1nd   vectors of 

gradient of the bubble function, nd indicates the dimension of the problem. 

4.4 The solution of the coarse scale problem 

Once we have obtained the fine scale solution û , substitute it into the coarse fine 
problem. We get 
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     Compared with the standard variational form, it is important to note that the 
fourth term on the left appears in Eq. (22) and the second term on the left appears 
in Eq. (23) owe to the assumption that there exists fine scale in the problem, 
which in fact models the effect of the fine scale. Additionally, the method is 
based on residual, therefore the resulting formulation is consistent and can 
accommodate the exact solution. Another important feature of this formulation is 
that the definition of the stabilization tensor κ has appeared naturally via the 
solution of the fine scale problem. 

5 Numerical example 

In this section, two benchmark problems named plane Poiseuille flow and lid-
driven cavity flow are solved to demonstrate the performance of the VMEFG 
method is solving non-Newtonian flows. 

5.1 Plane Poiseuille flow 

The Poiseuille flow is formed between two parallel plates. A schematic of the 
problem is depicted in Fig. 1. The width of the channel is 2 units and the length 
of the channel is 6 units. No-slip conditions are imposed on the solid boundaries. 
Results of numerical simulation using p-version least squares finite element 
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method were presented by Bell and Surana [15] and smoothed particle 
hydrodynamics were presented by Vakilha and Manzari [13]. The analytical 
solution of the velocity profile for a fully-developed laminar flow of a power-law 
fluid is given by 

1( ) 2 1 2 | |
[1 ( ) ]

1

n
n

avg

v y n y

v n L


 


 

where v is normalized by the average velocity avgv . 

 

Figure 1: Geometry and boundary conditions for Poiseuille flow under 
parabolic inlet velocity profile. 

     Fig. 2 plots the full developed velocity profiles for power-law indices of 0.5, 
1.0 and 1.5 respectively. It can be noted that our calculated velocity profiles are 
in excellent agreement with the analytical solution. 

 

Figure 2: Velocity profiles for various values of the power-law index. Lines 
represent the analytical solution for various values of the power-
law index. 

5.2 Lid-driven cavity flow 

Lid-driven cavity flow problem is also usually considered as a benchmark 
problem to validate the proposed methods for numerical simulations of non-
Newtonian flow. The problem is characterized by a square cavity in which the 
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driving force for the flow is the shear created by the sliding lid. Fig. 3 shows a 
schematic of the cavity with the boundary conditions. 
 
 

 

Figure 3: Geometry and boundary conditions for lid-driven cavity flow 
problem. 

 
(a) u-velocity                     (b) v-velocity 

Figure 4: Comparison between present results and the results by previous 
researchers for different values of power-law indices. 

     In order to validate the VMEFG method for the problem, calculations have 
been performed for Re=100 and different values of the power-law indices of 
which results from previous research are available [15]. Figure 4 shows the 
present results for the u-velocity along the vertical centerline of the cavity and v-
velocity along the horizontal centerline of the cavity for n=0.5, 1.0 and 1.5. It can 
be seen that for n=0.5 and 1.5 the results obtained by VMEFG are in good 
agreement with the results by Bell and Surana [15], and for n=1.0, these are in 
close with the results by Ghia et al. [16]. Figure 5 shows the streamline for 
power-law indices of 0.5, 1.0 and 1.5 respectively. It can be seen that the 
position of the main vortex shifts towards the upper right corner as the power-
law index decreases. The pressure contours for power-law indices of 0.5, 1.0 and 
1.5 are also shown in Figure 6, it can be seen that the pressure contours are 
smooth. 
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(a) n=0.5                   (b) n=1.0                   (c) n=1.5 

Figure 5: Streamlines for power-law indices n=0.5 (a), n=1.0 (b), n=1.5 (c). 

 
(a) n=0.5                   (b) n=1.0                   (c) n=1.5 

Figure 6: Pressure contours for power-law indices n=0.5 (a), n=1.0 (b), n=1.5 
(c). 

6 Conclusions 

In the work EFG combined with the variational multiscale method was extended 
for the solution of incompressible generalized Newtonian fluid flow. Numerical 
example indicates that VMEFG method can produce satisfactory numerical 
results for the solution of incompressible generalized Newtonian fluid flow in the 
simulation of laminar flow of power-law fluids. Additionally, although in the 
paper the presented formulation has been used for simulation of the laminar of 
power-law fluids, it also can be used for other generalized Newtonian model, 
such as the Carreau-Yasuda model, Bingham model and so on. 
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