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Abstract

A simple mesh/grid free numerical method for Poisson's equation has been
developed to solve large scale problems in three-dimensions, In this paper,
the Poisson's equation is split into two parts by using the method of par-
ticular solutions; the particular solution being approximated by the dual
reciprocity method (DRM). In the DRM, we choose compactly supported
radial basis functions for the interpolation of the forcing term. To then
achieve a true meshless method, we employ the method of fundamental so-
lutions (MFS) in order to solve the resulting homogeneouse quation. The
approach developed here is especially attractive for complex-shaped bound-
aries in arbitrary dimensions.

1 Introduction

In the past decade, the application of the Dual Reciprocity method (DRM)
[10, 12] in the boundary element literature has grown at a rapid pace, due
in large part to its unique ability to alleviate the domain integration which
occurs when the governing differential equation contains a non homogeneous
term. The recent theoretical development [6, 8] of the DRM using radial ba-
sis functions (RBFs) has put the DRM on a firm mathematical foundation.
As a result, the DRM has been confirmed as a reliable numerical method
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562 Boundary Elements

in solving various kind of partial differential equations. Recently, the dis-
covery of analytic particular solutions for Helmholtz operator using thin
plate splines and high-order splines [9] have further extended the applica-
bility of the DRM. In general, RBFs are globally defined basis functions. In
the process of interpolating nonhomogeneous term, however, they lead to a
dense matrix which may become ill-conditioned for large number of interpo-
lation points, especially in the higher dimensional cases. To overcome this
difficulty, we adopt compactly supported radial basis functions (CS-RBFs),
which have been recently developed by Wu [15] and Wendlend [14] for the
purpose of interpolating large scale problems. We refer the reader to Sch-
aback [13] for an excellent review of CS-RBFs. In the context of the DRM,
CS-RBFs have been implemented in a simple 2D case [3]. As the choice of
interpolation nodes for the classical RBFs and CS-RBFs are usually quite
arbitrary, we use quasi-random points [11] to ensure the uniform distribu-
tion of collocation points. This is the first part of our so-called meshless
approach for the evaluation of particular solutions.

The second part of our meshless scheme is to employ the method of
fundamental solutions (MFS) for the solution of elliptic boundary value
problems. In some sense, the MFS and the boundary element method are
very similar. Both methods require a known fundamental solution of the
govenering equation. One of the advantages of the BEM is its ability to
reduce a problem such that only boundary discretization is required. How-
ever, it still remains a formidable task to discretize the surface of an irregular
domain in three-dimensions [1]. Alternately, the MFS may be regarded as a
meshless method for solving homogeneous differential equations. The MFS
requires neither domain nor boundary discretization. Furthermore, bound-
ary integration is not required and so the MFS is very efficient in terms
of numerical computation. The MFS is therefore especially attractive in
higher dimensional cases. Recently, there are two excellent review papers
[4, 7] devoted to this subject. In this paper, we coupled the complemen-
tary MFS and the DRM using CS-RBFs to achieve a complete meshless
method. A numerical example in three-dimensions is given to demonstrate
the effectiveness of our method.

2 The Method of Particular Solutions

Here we consider Poisson's equation with Dirichlet boundary conditions;

= /(x), xefi, (1)

(2)

where H C R^ is a bounded open nonempty domain with sufficiently regular
boundary d£l. It is well-known that the nonhomogeneous term in (1) can
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Boundary Elements 563

be eliminated by the use of a particular solution. Let v = u — Up, where Up
is a particular solution satisfying the nonhomogeneous equation

= /(x) (3)

but does not necessary satisfy the boundary condition in (2). The function
v then satisfies the homogeneous boundary value problem

(4)

(5)

= 0, x € (I,

v(x) = g(x)-Up(x), x

Since v satisfies Laplace's equation, the integral formulation for v does not
contain a domain integration. This method therefore works provided Up in
(3) can be determined analytically, which is a significant task for a general
function /(x). In the next section, we address the issue of achieving a mesh
free method for evaluating particular solutions. Once a particular solution
has been determined, the homogeneous equations in (4)-(5) can be solved
by standard BEMs. To avoid meshing surface in three-dimensions, we adopt
the MFS, as demonstrated in Section 5.

3 Compactly Supported RBFs and the DRM

be a continuous function such that </?(0) > 0. For any
i G H, we let

where ||#|| is the Euclidean norm; the functional <£>; being then the so-called
radial basis function. Instead of defining a global function, CS-RBFs are
radial basis functions with local support. In this section, we extend the
results of [3] to a three-dimensional case in order to demonstrate the useful-
ness of CS-RBFs for large scale problems. For the detailed discussion of the
CS-RBFs, we refer readers to References [13, 15, 14]. In Table 1, we give a
list of CS-RBFs which were constructed by Wendland [14]. These functions
contain the lowest possible degree among all piecewise polynomial CS-RBFs
which are positively defined on E^ for a given order of smoothness.

Table 1. Wendland's CS-PD-RBFs; r = ||x - x;||.
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564 Boundary Elements

In Table 1, we define

We also note that the radius of support in Table 1 has been normalized to
[0,1]. In practical implementations, we need to rescale the support of (p with
the support of a given radius a by using </?(r/a) for a > 0. For a detailed
discussion of this scaling effect, we refer the reader to [5, 13].

We now assume that /(x) in (3) can be "approximated" by /(x) and
that we can obtain an analytical solution Up such that

A«p(x) = /(x). (6)

The function Up in (3) can then be approximated by Up in (6) in the following
sense. The initial step of the DRM is the determination of /(x) through
a basis function expansion. In three-dimeansions, a corresponding large
number of interpolating points may be required in order that /(x) may be
obtained as accurately as possible. To avoid any associated ill-conditioning,
we will employ CS-RBFs. The approximation of f by f is accomplished
through the condition

/(*) = /(*), l<i<JV, (7)

where {x;}̂  is a given set of pairwise distinct centres The linear system

N
- x, ||) , 1 < z < TV, (8)

is then well-posed provided that the interpolation matrix

^ = [̂ (l|xi-Xj ||)],<. <̂  (9)

is non-singular, which is the case when CS-RBFs are utilized (9). This then
ensures the solvability of (9).

Once / in (6) has been determined, the function Up can be computed by

N
6p = ]Tai$i, (10)

2=1

where
A$< = V>; (11)

such that <0i — (£>(||x-Xi||) and $; = $(||x -Xi||).
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Boundary Elements 565

4 Evaluation of Particular Solutions

One of the key steps in the DRM is the analytical solution of (11); which we
derive explicitly here. To be more specific, we choose <p = (I — r)̂  (4r -f 1)
in Table 1, with scaling factor a. Prom (11), we have

(12)

r > a.

Since then A = (l/r̂ }(d/dr}(r̂ d/dr] in three-dimensions, by a straightfor-
ward integration we obtain

'

r > a.

Following the same integration procedure as above, we obtain

7*
$(-)

/"-[—-
y o ̂  i>5

15s?

14 42r'

, r < a,

r > a.

r < a,

(14)

5 The MFS for Laplace's Equation

In this section, we apply the MFS to solve the Laplace equation in (4)-(5). In
the MFS, we embed the boundary of the domain into an auxiliary boundary
dtlA D O. In general, we choose d^A as a circle in two-dimensions [2, 7] and
a sphere in three-dimensions. We then place "source" points on dCtA- In
general, these source points are evenly distributed on a sphere containing
the domain O. The purpose of moving the source points outside of the
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566 Boundary Elements

domain Cl is to avoid the singularities of the fundamental solutions of the
Laplacian.

Let {xjjJLi then denote a set of points on the auxiliary boundary O^A,
so-called source points. We then approximate the solution v(x) of (5) by a
function of the form [4, 7]

4-c, Xj G an/i, (15)

such that G(X,XJ) is the fundamental solution;

{—log||x-Xj||, x,x, €R^

**-! ^6R»
47T||X-X,||' *'*̂ R,

and ||#|| is the Euclidean norm. By collocation, we need to choose a set of
points {x&}%Li on dtl. Applying the boundary conditions of (5) to (15), we
obtain the following system of equations

m
, for A; = 1,2,..., m. (16)

Notice that due to the extra constant term c in (15), one more collocation
point on the physical boundary is required. The above linear system of
equations can be solved for {cj}ĵ i U {c} by any linear solver. Bogomolny
[2] showed that the auxiliary boundary dtl A can be taken as a circle in
two-dimensions (or a sphere in three-dimensions) and the {xj } Jl^ equally

distributed, and moreover, the larger the radius of the source circle (sphere),
the better the approximation. In this case, however, the resulting matrix
in (16) becomes extremely ill-conditioned. As indicated in [2], numerical
result seems to be insensitive to this ill-conditioning.

An approximation Um to u is then given by

m
,,, x € 0. (17)

6 Numerical Example

In this section, we give an example to demonstrate the effectiveness of our
proposed meshless method for a three-dimensional problem. It is known
that the resulting matrix A^ in (9) is sparse and iterative techniques such
as the conjugate gradient method can be used to efficiently solve the system.
We have implemented the following example on a PC with double precision.
To solve the sparse system, we used a real sparse symmetric positive definite
linear equation solver (DLSLDX) from the IMSL library (PC version).
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Boundary Elements 567

Figure 1: 3D graph of parametric surface in (20).

We consider the following problem:

&u(x,y,z) = — 3cos(x)cos(y)cos(z), (%,%/, z) G 17 (18)

u(x,y,z) — cos (x) cos(y) cos (z), (x,y, z) G dft. (19)

Also, we denote #(#) = Jcos(20) 4- \/l.l -sin̂ (20). The surface of the

domain we consider, 17 U ̂ 17, is represented by the following parametric
surface

r(0, <t>) = A(0) cos (0) i + R(0) sin (0) cos sin (0) cos (0) k,
(20)

where 0 e [0,7r),0 e [0,2?r) (cf. Figure 1, 20). The analytical solution of
(18)-(19) is given by

u(x,y, z) = cos (x) cos(y] cos (z) (%, i/, z) € 17 U <917. (21)

Figure 2: Quasi-random points on the surface as shown in (20).
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568 Boundary Elements

W

0

a =1.4

-1.0 -0.5 0.0 0.5 1.0 1.5

XAxis

Figure 3: The effect of various scaling factor a.

In this example, we choose the basis function (p — (1 — r)̂ _ (4r -1-1)
applied to 300 quasi-random points [11] in the box [—1.5,1,5] x [—.5, .5]
x[.5, .5] for the interpolation of the forcing term. By collocation, particular
solutions can be found using (10). In the MFS, we choose 101 quasi-random
field points on the parametric surface, as shown in Figure 2, and 100 quasi-
random source points on a sphere with center on origin and radius 9. The
numerical results are computed along the x-axis with y = z = 0. The result
of relative errors in percent with three different scaling factors are shown in
Figure 3. We observe that with "larger" support, more interpolation points
are included in the process of the approximation. Therefore, as expected,
with more information a more accurate solutions is obtained.

-1.0 -0.5 1.00.0 0.5

XAxis

Figure 4: The effect of the number of source points using the MFS.
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Boundary Elements 569

In Figure 4, we note in particular that greater accuracies are not achieved
by increasing the number of collocation points in the MFS. As noted in [6],
this is a consequence of the approximation error in the evaluation of the
particular solution effecting the accuracy of u.

7 Conclusion

A truly meshless method has been proposed to solve Poisson's equation in
three-dimesnions. Unlike methods which are mesh dependent, such as the
finite element method, finite difference method, and the boundary element
method, coding efficiencies result as a consequence of the elimination of the
volume (or surface) discretization in the present approach. In addition, this
method may be extended to solve other types of differential equations as
shown in the DRM literature.

Acknowledgments: The first author acknowledges the support of a NATO
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Golberg for his helpful comments.
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