
Influence of shear and elongation on drop

deformation in a convergent/divergent tube

R.E. Khayat, A. Luciani, L.A. Utracki

National Research Council of Canada,

Industrial Materials Institute,

75 deMortagne blvd., Boucherville, Quebec, Canada J4B 6Y4

Abstract

We examine the influence of shear and elongation on the planar
deformation of a drop as it is driven by the ambient flow of a surrounding
fluid flowing in a convergent/divergent tube. A boundary element
approach is adopted that requires the solution of two simultaneous integral
equations on the drop/fluid interface and tube wall. Effects of the viscosity
ratio, the initial position of the drop (with respect to the tube axis) and its
diameter (relative to the tube dimension), on the motion of the drop are
examined.

1 Introduction

While extensive work has been devoted to the modeling and simulation of
drops deforming in an infinite fluid medium, relatively little has been done
in the case of a drop deforming in a confined medium. In both cases, most
simulations were carried out using the boundary-element method (BEM).
Applications of the BEM have ranged from the classical study of a rising
drop in an otherwise quiescent fluid,^ to more complex situations such as
drop breakup and coalescence,̂  the deformation of biological cells/ and
the deformation of small drops in electric and magnetic fields.̂  Some
studies also included the influence of non-uniform flow such as the
deformation of drops in shear floŵ  and extensional flow.? More recently,
the BEM has been extended to include the motion of a drop in the vicinity
of a plane wall,̂  a deformable interface,̂  the deformation of drops in
confined flows such as inside a circular tube,̂  or in a tube with
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516 Boundary Elements

constriction.̂  These latter studies, however, examined only axisymmetric
motion; the drop deformation was therefore confined along the axis of the
tube.

This paper, is one in the series of publications that explore the
applicability of the BEM to problems in materials processing. *2-i4 Thus,
we examine the influence of shear and elongation on the planar motion of
the drop as it deforms inside the tube. This problem is of great importance
for the compounding and mixing of polymer blends, where drops of one
viscoelastic liquid must be dispersed within another polymer matrix. ̂.16 A
shear- or elongation-dominated drop deformation will depend on the initial
position of the deforming drop with respect to the tube axis and its size
relative to the tube dimension(s).

2 Boundary element formulation

Both drop and suspending fluid are assumed to be viscous Newtonian and
incompressible. We are particularly interested in low Reynolds number
flows that are typically characterized by small velocities, small length
scales and/or high fluid viscosities. This assumption is reasonably justified
in the present case since the fluids of interest are typical polymers of high
viscosity undergoing small strain rates during the flow. In this limit the
inertia terms in the Navier-Stokes equations are neglected so the system
drop/fluid is in a state of creeping motion. At any instant t, the drop
occupies a region n̂ (t) and is assumed to be neutrally buoyant so the
effects of gravity and any external body forces are neglected. The
suspending fluid, which occupies the region Q$(t), is driven by an imposed
pressure gradient and flows at a constant volume rate. We assume that the
regions Qj(t) and Qg(t) are separated at any time by the moving interface
Fj(t) between drop and the suspending fluid. We thus exclude situations
where the drop comes in contact with the tube walls or the drop being too
close to the entrance or exit. The region £2§(t) is thus assumed bounded by

Fj(t) and the inner boundary of the tube, F^ = f^n ̂  ̂ ex vj F^ is

composed of the inner walls of the tube F\y as well as the entrance and exit
regions Fg^ and Fg%, respectively. The conservation of mass and linear
momentum equations are given for a general flow in region £l(i) by:

V-u = 0, V-a = 0, a = -pI + n.(Vu + Vu'), xeQ(t), (1)

where V as the gradient operator, x the position vector, u the velocity
vector, a the stress tensor, p is the hydrostatic pressure, p, the viscosity of
the fluid medium and I the unit tensor. It is important to note that the
acceleration term 9u/at in the momentum conservation equation has been
neglected, so the formulation in question is quasi-steady. The quasi-steady
state assumption is valid whenever L%/v « T, where L and T are typical
characteristic length and time of flow, and v = p/p is the kinematic
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Boundary Elements 517

viscosity (p being the density). In the present case, since there is no
driving velocity in the problem, T - L(p/AP)̂ , AP being a typical value of
the driving pressure. Thus, for the quasi-steady state assumption to apply,
one must have APL̂ /pv̂  « l. This is indeed typically the case for a
polymeric fluid. Note also that this inequality is implied by the smallness
of the Reynolds number. Physically, the quasi-steady state approximation
means that the fluid immediately adjusts to changes in the location of the
interface. Equation (1) must be supplemented by appropriate boundary
conditions.

While the boundary conditions at the solid wall are straightforward,
those at the interface must be examined more closely. The suspending
fluid is assumed to adhere to the solid boundary, so that stick boundary
conditions apply on f\y. Thus, the flow field is determined through eqn (1)
for Qg(t) subject to stick and no penetration at the tube wall T̂ , dynamic
conditions and an appropriately chosen kinematic condition at the interface
Tj(t). The proper choice and implementation of a kinematic condition are
not obvious.i? In a Lagrangian representation, the interface is assumed to
deform with the fluid velocity. This procedure tends to sweep points on
the surface along the tangent to the surface even if small shape changes
actually occur. Consequently, frequent redistribution of surface points
becomes necessary. In this paper, the interface is assumed to deform point-
wise along the normal with the normal projection of the fluid velocity at
the surfaced This method has the advantage of keeping the points on the
surface evenly distributed. The following kinematic boundary conditions
are assumed to hold on T̂ t):

^ = n(x,t)[n(x,t)-u(x,t)], xeT^t) (2)

where n is the normal unit vector at the interface directed from the
suspending fluid region to the region occupied by the drop. The dynamic
conditions on the interface is based on the continuity of the tangential
stress (no traction) and discontinuity of normal stress due to interfacial
tension:

[GS(x, t) - <?d (x, t)] • n(x, t) = TH(X, t)V • n(x, t), x € F- (t) (3)

where y is the relative interfacial tension. Subscripts s and d are used to
refer to flow variables in the suspended fluid and drop regions,
respectively. Note that eqn (3) was derived assuming equilibrium
conditions and uniform surface tension under dynamic conditions.̂  The
continuity of velocity also applies at the interface:
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518 Boundary Elements

The integral representation of the Stokes equations in the two fluid regions
Qg(t) and Q̂ (t) is based on the Reciprocal (Green's) Theorem, which

relates the fields (u, a) to the fundamental solution (u*, a*).** We denote
by X the drop-to-fluid viscosity ratio, while the velocity and traction by
iid(x,t) and tj(x,t) in the drop region Q̂ (t), and by u$(x,t) and t§(x,t) in
the suspending fluid region fig(t), obtaining the following integral
equations:

J |-ts(y,t)-J(xly)-Us(y,t)-K(xly)j(r(y)=

^ J

J |Ud(y,t)-K(xly)-̂ td(y,t)-J(xly)|cr(y)=
P. /*\L f̂  J
'

Note that J and K are second and third rank tensors, respectively, given
by:

K(xly) = —HE (6)
K r

for an unbounded two-dimensional domain. Here r = x - y is the relative
position between the field point and source point, and r = Irl. We are
particularly interested in the evolution of the interface; the variable of
main interest is thus the velocity at the interface Uj(x e Fj,t) = û (x e F
j,t). Note that the tractions on each side of the interface must also be
determined. We can, however, take advantage of condition (3) that relates
the normal tractions in terms of the interfacial tension, and eliminate the
tractions at the interface altogether. For this, we multiplying the first of
eqn (5) by X, adding to the second equation, and using the boundary
conditions (3) and (4) to yield:
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Boundary Elements 519

J Ug(y,t)-

^

K(xly)-its(y,t)-J(xly) (T(y) + (l-X) Ju<i(y,t).K(xly)dr(y)

* J net)

Ug(X.t)

-J J[Vy.n(y)]n(y).J(xly)cT(y)=| (7)

We also need an integral equation that governs the value of the velocity
and traction on the walls of the tube, that can be similarly obtained:

J |(l-X)Ud(y,t)-K(xly)-l[Vy.n(y)]n(y).J(xly)}(T(y) +

Hftr ^ J

jk(y,t)-

i

K(xly)-~ts(y,t)-J(xly) dT(y)=~Us(x,t) xê  (8)

If the velocity on T\ is fully prescribed (as in the present study), then only
the traction (in the second integral of the equation above) is determined.
Equations (7) and (8) represent coupled equations for the velocity at the
interface uj(x € Tj,t) and the traction at the walls of the tube tg(x e I\,t).
Also, following the determination of these unknowns, the flow field off
the interface and tube walls can be calculated using the first and third
equations in (7) in the drop region Q̂ (t) and the region Qg(t) occupied by
the suspending fluid. We now turn to the numerical solution of eqns (7)
and (8).

The integrals in eqns (7) and (8) are discretized into a finite sum of
contributing terms over the boundaries. In this study, we adopt the
simplest form of the BEM, and consider the velocity and traction to be
constant over each boundary element. We focus the attention on the value
of the flow variables on the boundary, assuming that the interface Fj(t) is

subdivided into Nj segments AFp and the tube wall I\ into N[ segments

AF|*\ The number of segments at the interface may vary in time if re-

meshing is needed. At each time step of the process, the shape of the
interface is determined from the velocity value and shape obtained at the
previous time step. There are exactly 2(Nj + Nj) unknowns at any time
step. The resulting system of linear algebraic equations may be written in
the form HU = GT + B, where H and G are the matrix coefficients of the
system and U and T are vectors containing the unknown velocity and
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520 Boundary Elements

traction variables. The matrice coefficients in the system are given as
follows:

JL

2'

i, n

AT:

AT;"

AT-

AT."

m € l,

m € [l.Nt+Nj], ne[l,N(]

where x^ is the position vector of the center of the segment. Note that
coefficients Ĥ n and B%in are time dependent while Ĝ n are constant.
The algebraic system above is solved using the LU factorization method.
The inner flow field in the drop and suspending fluid regions may then be
determined from the first and third equations of (7) once the unknown
variables are determined on the boundary.

3 Numerical results

In this section, we examine the planar deformation of droplets subjected to
the flow field of the suspending fluid, inside a parabolic
convergent/divergent tube (Figure 1). We are particularly interested in the
influence of ambient shear and elongation on the drop deformation.
Several influencing parameters may be examined in this case; we focus
our attention on the effects of viscosity ratio and initial drop position
relative to the tube axis. We assume that at time t = 0, the drop is suddenly
placed near the entrance region of the tube, and is subsequently subject to
the motion of the suspending fluid. Strictly speaking, the quasi steady-state
hypothesis assumed in the formulation is not valid since the drop is
practically subjected to a sudden motion (acceleration) at t > 0. The size of
the drop and its initial position relative to the axis of the tube are
determining factors on the drop deformation as to the dominance of either
shear or elongation effect from the suspending fluid. Thus, if the drop is
large relative to the tube opening, or positioned far from the tube axis, then
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Boundary Elements 521

the influence of shear flow from the boundary layer in the vicinity of the
tube wall becomes significant. On the other hand, if the drop size is
relatively small, or the drop is moving close to the tube axis, then the flow
elongation is most influential. The effect of the interfacial energy was
neglected in the following results.

We first examine the influence of the viscosity ratio in the range X e
[0.5, 5] for a drop of initial radius of 4 mm deforming along the tube axis.
The resulting deformation for the various viscosity ratios are shown in
Figure 2. For the situations corresponding to the higher viscosity ratios,
the drop tends to deform more like a solid as it resists deformation. The
drops were observed to elongate when approaching the neck region of the
tube, where most of the elongational flow is concentrated along the axis
and stretching the drop by more than twice its initial diameter. The
influence of shear flow becomes mostly visible as the drop exits from the
neck region, with its tail starting to deform leading to the formation of two
tails. It is interesting to observe that for X > 2, the shape of the drop as it
approaches the exit region is independent of viscosity ratio.

The situation is quite different when the drop viscosity is smaller than
that of the suspending fluid (A, = 0.5). In this case, the drop is observed to
deform significantly as it approaches the neck region. The deformation is
clearly symmetric as the drop recovers its circular shape at the exit of the
neck region. This shape recovery is most likely not due to the small
viscosity ratio but results rather from the high stretching deformation that
the drop undergoes in the neck region where elongation tends to dominate
over shear flow. In contrast to the cases with X > 2, the drop diameter has
decreased significantly in the neck region for any shear influence to be
significant on the subsequent deformation. The evolution of the
deformation with respect to the position is also shown in Figure 3 for
various viscosity ratios. The figure confirms the general tendency of the
drop deformation to increase and reach a maximum as the drop enters the
neck region, to then decrease as it nears the exit of the tube. The figure
also shows that the maximum tends to shift away from the middle of the
tube as the viscosity ratio increases.

In order to further assess the interplay between shear and elongation,
we examine the influence of the initial position of the drop. We have
placed a drop (of relative viscosity X = 2) off the axis, and the subsequent
deformation is shown in Figure 4 in comparison to that of a drop initially
positioned on the axis. The deformation of the latter is similar to that
shown in Figure 2 although the drop is twice smaller. The drop, located
initially off the axis, is observed to stretch more in the converging region
of the tube than the one placed on the axis. It tends to be dragged
(relatively) away from the tube wall into the center along the tube axis,
and then swept back into the region near the wall as it exits the neck
region. At this point, the drop remains significantly stretched and does not
recover its circular shape as the drop located along the axis tends to do.
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522 Boundary Elements

We also examined the influence of drop position relative to the tube
axis for two additional viscosity ratios as shown in Figures 5 and 6 for X =
0.9 and 10, respectively. The two figures show clearly the increase in
deformation as the drop is initially placed farther from the axis. Figure 5
indicates that the maximum deformation tends to occur at a position
further away from the neck region and towards the exit zone as the drop is
initially farther from the axis. For a relatively high viscosity ratio, Figure 6
indicates, unexpectedly, the presence of relatively significant deformation
for the drop initially positioned farthest from the tube axis; this
deformation is due to pronounced shearing, and would be essentially
absent for purely elongational flow.

4 Conclusion

The influence of shear and elongation is examined on the deformation of a
Newtonian drop as it is suspended in an ambient fluid flowing inside a
convergent/divergent tube. It is found that a small drop, placed initially on
the tube axis, tends to recover its initial shape in the divergent zone,
whereas a drop that is initially closer to the tube wall tends to stretch
indefinitely. A large drop with a relatively small viscosity also tends to
recover its initial shape because of the high degree of elongation that the
drop undergoes in the neck region. Thus, shearing may deform
significantly a drop as opposed to elongation which tends to help the drop
recover its circular shape. It is also found that relatively large deformation
can occur for a drop of relatively large viscosity (X = 10) which, in a
purely elongational flow, would not have deformed significantly (see
Figure 6).
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Figure 1. Convergent/divergent tube geometry and dimensions (m)
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0.2

' initial position=0.05

0.045

0.05 0.1 0.15 0.2
Position

Figure 5. Effect of initial position on relative deformation (X = 0.9).

1.6

1.5

1.4

1.3

1.2

1.1

initial posrtion=0.05

0.045

0.02 0.03 0.04 0.05 0.06 0.07 0.08
Position

Figure 6. Effect of initial position on relative deformation (X = 10).
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