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Abstract

A key issue in the Boundary Element Method is the solution of the associ-
ated system of algebraic equations. The matrices of this systems are dense and
sometimes ill conditioned. For tridimensional problems, with large scale systems
(several thousand of equations) direct methods like Gauss elimination become too
expensive and iterative methods may be preferable.

For these problems there are already many algorithms, namely for general
nonsymmetric systems. Most of them can be viewed as Lanczos or Conjugate
Gradient-like solvers. Here we present some iterative techniques based on Con-
jugate Gradient solvers as Descent Methods (DM), Bi-Conjugate Gradients (Bi-
CG), Conjugate Gradients Squared (CGS) and Bi-Conjugate Gradients Stab (Bi-
CGstab) that seem to have the potential to be competitive solvers for BEM alge-
braic systems of equations, specialy when used with an appropriate preconditioner.

1 Introduction

The Conjugate Gradient method (CG), first described by Hestenes and Stiefel
(1952), has been widely used for approximating the solution of large scale symmet-
ric systems that arise, for example, in Computational Mechanics [2, 6, 10, 11, 18].
This method, which requires one matrix-vector product per iteration, can be
viewed as a direct method that, in the absence of roundoff errors, gives the exact
solution in at most n steps, n being the order of the matrix, or as an iterative
solver that yields a good approximation to the exact solution in a few steps.

These iterative techniques have been widely employed for solving FEM systems
of equations taking advantage of the fact that the system matrix is sparse and
symmetric positive definite (SPD).

That is not the case with BEM matrices which are dense and sometimes ill
conditioned. Those reasons make the CG algorithms not directly applicable and
the solution of BEM systems of equations by iterative techniques is much more
difficult [4, 13, 21].
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270 Boundary Elements

However for general unsymmetric matrices there are some generalisations of CG
available, such as Descent Methods [17], Bi-Conjugate Gradients [16], a Lanczos-
type method introduced by Fletcher (1976) and which requires multiplication by
the transpose matrix. Conjugate Gradient Squared [14], a faster converging variant
that does not suffer from this drawback, introduced by Sonneveld (1984) and some
others, as Generalized Conjugate Residual [19] and Orthomin [17, 20].

In some classes of problems, an irregular convergence behavior of CGS arises,
notably when the iterations are started close to the solution. To correct this behav-
ior Van der Vorst (1992) introduced the Bi-CGStab, a method with a convergence
behavior much smoother, producing often much more accurate residual vectors
and in most cases converging considerably faster then CGS [7, 9].

It is important to recall that a possible technique for solving nonsymmetric
problems is to apply an iterative technique to the normal equations A*Ax_ = A*b
in which the coefficient matrix is always symmetric and positive definite. This
procedure of overcoming the problem of the unsymmetry of A has the disadvantage
of being very expensive in memory requirements and time consumption. The
condition number of A*A is the square of the condition number of A, and so the
convergence is slow, and in particular for ill conditioned systems roundoff may
contaminate the results.

However, this method is guaranteed to converge anyhow (even in a finite num-
ber of iterations, neglecting roundoff), so it might be of value in situations where
other methods that are cheaper per iteration fail.

In this paper the performance of different Conjugate Gradient type methods,
for nonsymmetric systems, when applied in BEM tridimensional problems is anal-
ysed.

2 The Conjugate Gradient Method

Let A be a nxn SPD matrix and let Ax=b, be the system to be solved. The
solution of this system is equivalent to the minimization of the functional 0(x) =
i(x,Ax)-(x,b).

The minimum value of <j) is (6, A *6)/2 achieved by setting x — A *6.
For the minimization of </> we can use the strategy of the steepest descent: at

a current point x^ the function </> decreases most rapidly in the direction of the
negative gradient — V <t>(%c) = b ~ A^. If the residual of x_^ (r<, = b — Ax^) is
nonzero, then 0(x̂  -f <%,) < 4>(x_c) with a positive.

In the steepest descent method we set a = A~̂ \ minimizing </>(x^ + otr_̂ ).
The initial approximation XQ may be 0, or if we have a better guess x*, this

value.
Unfortunately the speed of convergence of the steepest descent method depends

on the condition number K(A) — ^ (A of matrix A, arid is very slow for large
K(A) (\max and \min are the largest and the smallest eigenvalues of the SPD
matrix).

The gradient directions that arise during the iteration process are not the best
ones (they are too similar) slowing the process towards the minimum point. To
avoid this situation we consider the sucessive minimization of 0 along a set of di-
rections {p ,p ,...} that do not necessarily correspond to the residuals {T.Q,LI•>•••}•
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Boundary Elements 271

~'~Now to minimize <t>(^_i +ap^) with respect to a we set a — a^ — (~p'~Ap

with this choice ̂  = z^i + ̂ A:P̂ . ̂ rid ̂  G span {g^ •••P̂ .} ((pA:,̂ -i) 7^ 0)-
The problem is the selection of the ideal vectors {p̂ ,?̂  •••}• A good approach

is to choose linearly independent p^ with the property that each x_^ solves

min 0(z) (1)

This would guarantee the global convergence and the finite termination too,
because we must have Ax_^ = b.

The vector p , solution of the one dimensional minimization problem min^
4> (x.k-i + c%p,) is a partial solution of the K-dimensional minimization problem
(l)too.

The vector x_^ = x_k-i + ®kP^ minimizes <j> over the span of the search directions
(the subspace span{p^, ...,ĝ }).

If it is possible to choose p^ such that (p^,Ap^) = 0, (p^,Lk-i) ^ 0 and to
ensure a reduction in the size of the residuals choosing p^ in order to be the
closest vector to r^_i that is A-conjugate to p^, ...,p^_^ we have a first version of
Conjugate Gradient method.

As p, are nonzero vectors and nonzero A-conjugate vectors are linearly in-
dependent, either r_k-\ — 0 for some k<n, or we compute x^ which minimize 0
over span{p , ...,p̂ } = R™ and so the finite termination of the problem (1) is
guaranteed.

To compute p^ we set p^ — T_k+\ + A&_% with flk = f~̂ .1\ ̂  y-

Applying A to both sides of x_^ — x_k-i + ®kP^ using the definition of the
residual we get r* = r^_i - o^^Ap^ and after some calculation we obtain an efficient
implementation of Conjugate Gradiente method:

Let A be a nxn SPD matrix, and b G^, then the
following algorithm computes the solution of Ax_ = b

while r / 0
k=k+l
if k=l

else

end
_

^ "

end

This algorithm only requires one matrix-vector multiplication per iteration.
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272 Boundary Elements

3 Conjugate Gradient-like Methods for Unsymmetric

Systems

3.1 Descent Methods

Let A be a nonsymmetric nxn matrix with a positive definite symmetric part M
(M=î l).

We present four variants of descent methods that differ in their computational
effort and storage requirements all of which have the following general form:

k=0 ; choose x_ Q ; 743 = b — AX_Q ; p^ = r^
While it / 0

k=k+l

Compute
end

The choice of QJ. in (3) minimizes || tk-i \\2-\\ b— A(x_k + ap^} \\? as a function
of a, so that the Euclidean norm of the residual decreases at each step.

The four variants considered differ in the technique used to compute the new
direction vector p, . The choice of this vector must result in a significant decrease— /C-j- 1
in the norm of the residual || r.k+i \\2 and must not require a large amount of
computational work.

If we set p^ = rk+i + Ak2& (4a)

A = (4b)
we get another variant of CG known as the Conjugate Residual Method (CR).
Another option is to generate a set of /4/A-orthogonal directions using all the

previous vectors {p̂ jf-o to compute p^

where / ^

This variant is known as the Generalized Conjugate Residual Method (GCR)
and in the absence of roundoff errors gives the exact solution of the system in at
most n iterations.

The work and storage requirements per iteration of GCR may be prohibitively
high when n is large thus Vinsorne (1976) has proposeded a modification of this
method, significantly less expensive per iteration. Instead of making p^ A* A-
orthogonal to all preceding vectors {p̂ .}fLo one can make p^_ orthogonal to only

the last / (>0) vectors {p^i^k-l+i-

a_n = ̂ +1 + ELt-f+i /f )& (/>0) (6)

with {/)) }j-k_i+i defined in (5b). Only / direction vectors need to be saved.
This variant is called Orthomin.

Finally, another alternative is to restart GCR periodically: every / + 1 itera-
tions, the current iterate x_^(l -f 1) is taken as the new starting guess (i counts the
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Boundary Elements 273

number of restarts). This variant GCR(/) has the same storage requirements as
Orthomin(l), the cost per iteration is however lower.

For the special case /=0, Orthomin(/) and GCR(/) are identical and

This method with very modest work and storage requirements is called Mini-
mum Residual (MR).

3.2 Bi-Conjugate Gradient Method

A suitable algorithm for solving indefinite and unsymmetric systems is a different
generalization of conjugate gradients, the Bi-conjugate Gradient algorithm, used
by Lanczos as a mean of computing the eigenvalues of an unsymmetric matrix
A. Two vectors ̂  and r^ are given, and letting p^ = r± and p* = r^, then for
k=l,2,..., the following recurrence relations

With
are defined. The scalar a& is choosen so as to force the biorthogoriality condition

k) = (r£_|_i,ZJb) = 0 and fa is choosen to force de biconjugacy condition

The algorithm (8) analogous to algorithm (2) has the feature that these two
conditions also hold for any pair of vectors without having to be explicity enforced.
Another characteristic of this algorithm is that it must terminate with r^+i = H/c+i
in at most n iterations.

Starting from (8) it is possible to augment this algorithm in order to get the
Bi-Conjugate Gradient method for solving the system Ax_ — 6, for general unsym-
metric A.

We have:

For k=0,l,2,...,m,...do

(9)

end

In this algorithm the explicit accurrence of A* in the computation can be
considered a disadvantage.
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274 Boundary Elements

3.3 Conjugate Gradient Squared Method

The amount of work needed for the computation of the vectors r£ and p* in (9) is
about the same as that for the original CG method itself, so we observe that the
computational work of the Bi-CG algorithm is twice the computational work for
the CG algorithm.

In order to improve the situation Sonneveld (1984) derived a generalization
of CG where the problem of the occurrence of A* is avoided, via a polynomial
equivalent of the CG algorithm. Taking the squares of computational steps it is
possible to arrive at an algorithm for the squared polynomials and then to get a
vectorial variant of this algorithm by substituition of A in the polynomials.

Let XQ be a starting estimate of the solution x_ of the nonsingular system Ax_ — b
and let r_- be suitably chosen. Then the CGS algorithm reads as follow:

ro = b - AXQ
%o = 2o = I, = lo
For k=0,l,2,...,m,...,do

(10)

end

Each step requires twice the amount of work necessary for original CG but not
more than Bi-CG, and working with A* is avoided.

3.4 Bi-CGStab

In many situations a quite irregular convergence behaviour of CGS occurs, in
particular in situations when starting the iteration close to the solution. Motivated
by this facts H. A. Van der Vorst (1992) proposed a more smoothly converging
variant of Bi-CG but with the same attractive speed of convergence of CGS. The
Bi-CGStab algorithm is derived via a polynomial equivalent identical to the Bi-CG
scheme.

It reads as follows:

Let Xgbe an initial guess; r_Q — b — AX_Q
rg is an arbitrary vector, such that
(r.o,ZLo)^0, e. g. lS = ro
po = a = UQ - 1;

:%o = 2o = 0;
For k=l,2,...,m,...do

• ft — (Pk/Pk-i)
, P - (a/ut_i)

(11)
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Boundary Elements 275

end

From the orthogonality property the algorithm (11) is guaranteed to have a
finite termination in at most n iterations and the computational work per iteration
step is identical to that of CGS.

4 Preconditioning

The preconditioning of symmetric indefinite and non-symmetric matrix systems is
far from being a well established, effective or standard procedure, but it plays an
important role in the performance of the methods [5, 8, 12].

In this section we refer the use of preconditioning with the aim of reduction
of computational work required to obtain a good approximation to the solution.
The literature on preconditioning for Conjugate Gradient type methods has been
mainly concerned with its use on sparse matrices as those of finite differences and
FEM. However the BEM matrices are dense, and so the use of standard incomplete
factorization technique is not applicable.

In general we may say that the best preconditioner of a given system Ax = b is
in some sense the inverse of A: the solution is then attained in only one iteration
step. The problem is the amount of computational work needed for that in normal
circumstances.

Considering this facts and that the simplest form of preconditioning is scaling
the rows and columns of the matrix with the intention of obtaining a diagonal unit
this technique was applied in the numerical examples of next section.

The scaling by the diagonal of the matrix A is in some respects optimal, since it
approximatly minimizes the condition number of D~^A among all other diagonal
scalings.

5 Numerical Results

In our experiments we consider two different examples to analyse the behavior with
respect to accuracy and efficiency of the iterative techniques considered in this work
when applied to the approximate solution of BEM systems. The experiments have
been carried out in double precision floating point arithmetic (about 15 decimal
places) on a HP9000/720.

The first problem is an external flow. We consider a very slow flow of an
incompressible fluid about a solid sphere, Fig.l, that is analytically analysed in
[15] and the results are compared with the exact solution.
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276 Boundary Elements

Fig.l Flow of an incompressible fluid about a rigid sphere.

The second problem is a tridimensional heat flow problem with the geometrical
definitions and boundary conditions shown in Fig.2 and we compare the results
with the exact ones too. *

Fig.2 Heat flow problem (geometrical definitions and boundary conditions).

The matrices A(nxn) and b of the linear systems Ax_ = b to be solved are
produced by a tridimensional Boundary Element computer program written in
FORTRAN 77, after reordering the matrix equation Hu — Gq.

It is possible to use different types of triangular and quadrilateral elements and
in our experiments we consider triangular elements with six nodes and quadrilateral
elements with eight nodes. With the discretization used the resulting systems of
equation have a dimension greater than one thousand.

The figures above show examples with a small number of nodes and elements
(Fig.l - 225 nodes and 98 elements, Fig.2 - 319 nodes and 142 elements) and
possible symmetries were taken into account.

We employ the different CG type methods refered in this paper to obtain the
solution of these systems and the results are presented here.

1

N. Iterations
CGS -«- BI-CG

Fig.3 Results for the first problem (with and without preconditioning).

10 20 30 40 50 60 70 80 100 120 140N. Iterations-»- CGS -*- BI-CG
W 20 30 40 50 60 70 60 TOO 120 140N. Iterations• Desc. ••»•• BI-CGStab

Fig.4 Results for the second problem (with and without preconditioning).

                                                             Transactions on Modelling and Simulation vol 12, © 1996 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Boundary Elements 277

6 Conclusions

Some iterative techniques based on Conjugate Gradient solvers for the solution
of the dense and unsymmetric systems of equations obtained by BEM have been
presented.

From the results it becomes clear that these techniques perform differently,
although in general well. For the first problem all techniques achieved a high
convergence in a small number of iterations, with and without preconditioning.
It seems that when the convergence is quickly achieved preconditioning is not an
important factor.

For the second problem the iterative techniques performs differently and have
more difficulty to achieve convergence. The results with preconditioning are in gen-
eral better than without preconditioning and, of all iterative methods considered,
the better one is the preconditioned Bi-CG.

One important conclusion is that the computational effort for these CG type
methods obtain a good approximation to the solution, when applied in tridimen-
sional BEM, is cheaper by a factor often or greater, depending on the dimension of
the system, than the computational work needed by the Gauss elimination proce-
dures, O(n̂ ), an important factor for the solution of the large systems considered.

In order to exploit and confirm the potential of the methods, namely the as-
sessment of the different preconditioned, further studies will be required.
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