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Abstract

A direct boundary element method is presented for the dynamic analysis of thin
elastic plates and membranes of arbitrary shape. The formulations employ the
frequency domain dynamic fundamental solutions of the problems. The
fundamental solutions are then approximated by analytic solutions built from the
expressions of the asymptotic fields of the exact solutions. The perimeter is
discretized by linear boundary elements. Some numerical examples on circular
membranes and plates for both free and forced vibrations are presented to prove
the accuracy of the formulation.

1 Introduction

Analytical solutions to the problem of the vibrating plate, such as modal analysis
are limited to very simple geometry and boundary conditions. Numerical
solutions like finite element method (FEM), e.g. Zienkiewicz! and boundary
element method (BEM), e.g. Toumi2 can deal with this kind of problem. But if
the frequency range of the studied phenomenon increases the classical numerical
solutions become rapidly inaccurate because of the increasing time of
computing. As far as very high frequencies are concerned, the statistical energy
analysis (SEA), e.g. Lyon3 is able to describe the global energy levels in the
different sub-systems of a complicated structure. New solutions have been
recently developped in order to caracterise the structural vibrations in the mid
frequency range. Among those, one can mention the Energy flow formulation
whose aim is to evaluate the average energy density variables in the structures,
e.g. Wohlever & Bernhard4 and Ichchou, Lebot & JezequelS.

In this paper, a boundary element approach is presented to treat the dynamic
behaviour of membranes and plates subjected to high frequency level harmonic
loads. The paper employs the direct conventionnal B.E.M. for the dynamic
analysis of thin, elastic, flexural plates and membranes of arbitrary but smooth
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planform under any boundary and loading conditions. The corner effects are not
taken into account, which simplifies the formulation. The aim of this paper is to
exhibit an approximation of the Green function, by using the asymptotical
properties of the fundamental solution. This gives the possibility to treat with
subsquent time optimisation, any problems of harmonic loadings on a wide
frequency range. The effectiveness and the accuracy of the method is
demonstrated by presenting several numerical examples for both circular
membranes and plates loaded by a harmonic force located at the center of the
structure. The results are compared with those available from analytical
methods.

2 Integral formulation of the plate

The governing equation of flexural motion of a homogeneous, isotropic, thin
and linear elastic plate of surface Q and smooth perimeter I', under the
assumption of small deflections, can be written:
Viw+ Py -4 M)
D D’
Where w=w(x,t) is the lateral deflection, ph is the mass density per unit area, h
is the thickness, q=q(x,t) is the lateral load per unit area and D = Eh3/ 1 2(1 - 1)2)

is the flexural rigidity of the plate, with E and v being the modulus of elasticity
and Poisson's ratio, respectively. Assuming harmonic loading and hence of the
deflection, eqn. (1) becomes:

Vw-pgw=1. 2
w-pw=1 @
The symbol (-) represents the amplitude of the lateral deflection and the
loading.
« _pho’
= 3
B D 3)

 denotes the circular frequency of vibration.

The following boundary integral formulation provides from the classical
application of the reciprocal theorem between the two unrelated elastodynamics
states, represented by the fundamental solution, G and its derivatives associated

to eqn(2), and the studied physical solution, e.g. Butterfield & Bannerjee6 The
first integral equation has the form:

y=L [ (G(Br)w(x)- M, (G(Br ))93(’%
4
M, (w(x ))"G(’” W ()eBrlr (o~ [a(x)0 (Br)dax)

where c=1 for £ € Q, and c=1/2 for { €T, and r = |x €. Vn, Mp, 9/0n, and
n represent the shear force, normal bending moment, normal slope and outward
vector, respectively. The second boundary integral equation can be obtained

from Eq. (4) by taking its directional derivative d/dx. Thus, one can obtain for
the case of {e T (c=1/2):
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The numerical solution of eqns (4) and (5), will be accomplished by discretising
the boundary and by writing the above equations in discrete form.

M, (W) 9°G(pr) v, (w () aG(ﬁr):l AT (x) - _113 J’ 4 x)ﬂ%(f_r_) dQ(x)

3 Integral formulation of the membrane

The integral formulation of the membrane can be developped in the same manner
as it has been done for the plate. The considered membrane is subjected to a
harmonic load. The governing equation of a homogeneous, isotropic, and linear
elastic membrane with the assumption of small deflections under in-plane tensile
force T, has the form:

viw-Ly=-ZL ©)
T T
Where w is the lateral deflection, p is the mass density per unit area. q denotes
the lateral loading of the membrane per unit area. In the assumption of harmonic
loading and hence of the deflection eqn (6) becomes:
X -
viw+ P2y =4 @)
T T
o is the singular frequency and the symbol (-) denotes amplitudes. The
application of the reciprocal theorem leads to the boundary integral equation,
where G is the fundamental solution associated to eqn N:
1— - — -
L&) = [2)0(Br)dex) + [ G{Br)V, () = WGx)a (GBI (). (B
Q

r
As well as for the plate, the numerical solution of eqn (8) will be carried out by
discretising the boundary and by writing the above equation in discrete form.

4 The approximate kernel

In this section we build an approximation of the fundamental solution that will
prevent from going ahead to numerical problems when evaluating the Green
solution at high frequency levels. The major idea of this work relies on the fact
that one can replace the exact solution, build with Hankel functions, by an
asymptotic solution. We consider a near field and a far field and we must set up
a transition between the two fields. The approximate solution is supposed to
have the same properties than the exact one. That is to say, the new built
solution and its required derivatives must be continous.

Both for the plate and the membrane, the two fundamental solutions and there
derivatives are a combination of Hankel functions of the first kind of zero and
first order. These functions are expressed by series whose asymptotic fields
have been numerically settled by Abramovitz/, they are reminded in appendix
A. Therefore, the transition functions will be realized between the near and far
fields of the Hankel functions. From this starting point we propose a method to
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create the approximate field H(Br). The near field (respectively the far field) is
called Fp(Br) (respectively Ff(Br)). r is the radial coordinate.
Two points are considered, aand b, a<b
VBr<a H(fr)=F,(pr)
VBr2b H(Br)=F,(pr) )
Vpr € a,b] H(pr) = F,(Br). £ (Br) + F, (Br).n(Br)
The aim is to choose the functions f and n so that
F,(a) = F,(a).n(a)+ F,(a). f(a)
F,(b) = F,(b).n(b) + F,(b). ()
f and n must satisfy, n(a)= f(b)=0, n(b) = f(a)=1. Our goal is to build
smooth fundamental solutions. The functions n and f will be chosen so that
Vx>0 H(x)eC._. A very simple calculus shows that this property requires
the following condition on the f and n functions
Vne N f"(a)= f"(b)=n"(a)=n"(b)=0 (11)
One can find a lot of different functions verifying the enounced properties. The
expression of the proposed transition function is:

Vxe [b ; a ,b[, f(x)= % 1+ \jli e—%[m[bfna(x_]i(“")))]

(10)

b+a

: ] f(x)=1- fla+b~x) 12)
F(@)=0, f(B)=1

One can easily prove the function fis C_ on [a,b] , refering to the derivative
prolongation theorem, e.g. Lelong-Ferrand & Arnaudies8, and the values of the

successive derivatives at the boundary of the interval are all equal to zero. The
approximate fundamental solution can now be writen

V 0<pr<a, H(Br)=E(fr). V Br=b, H(r)=F,(fr)
V Brela,b[, H(Br)= E,(Br).{1- f(Br)}+ F,(Br). (Br)

Eqn (13) provides an analytic formulation of the approximate fundamental
solution. a and b are non dimensionnal constants fixed by the expressions of the
far field and the near field. In Figure 1a, a comparison between the exact and the
approximate fundamental solution for the membrane is presented. In Figure 1b
the same comparison for the plate is presented.

Vxe]a,

13)
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5 Numerical examples

Example 1

Consider a clamped circular membrane of radius R=1m, mass per unit volume
p-lOkg/mz, and tensile force T=10 and v=0.3, subjected to a concentrated
vertical harmonic loading at its center with magnitude FQ=1. A hysteretic
damping ratio of two percent is added. Five boundary elements are used, with
linear interpolation functions. The method is compared with an "exact" analytic
solution developped by Graff9, as shown in Figure 2.

v T T T T T T

-60° zio JIO ciu oio 1;0 1 ;O 140
Hz
Figure2: Tensile force at the boundary

--boundary element solution — analytic solution
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Example 2

Consider a clamped circular plate of radius R=0.5, thickness h=0,001, mass per
unit surface p=7800kg/m3, and elastic constants E=2, 1011 and v=0.3,
experiencing free vibrations. Those are obtained by a method developped by
KitaharalO. Table 1 presents the first three symmetric natural frequencies. The
obtained results are compared to the "exact" solution developped by Graff9, and
to a finite element software, ANSYS. Once again, five boundary elements with
linear interpolation functions are used.

Hz Viktorovitch & al ANSYS Graff
17 10,07 10,20 9,97
2 38,91 39,63 38,80
13 86,93 88,87 86,92

Table 1: natural frequencies of the first three symmetric modes

6 Conclusion

A direct boundary element formulation, for the dynamic analysis of thin elastic
plates and membranes of arbitrary shape, has been described. The formulations
employ the frequency domain dynamic fundamental solutions of the problems.
The main conclusions that can be drawn from the previous discussion are: (a)
the approximate fundamental solution brings subsequent time saving on the
solution; (b) the evaluation of the approximate kernel circumvents the
computational difficulties arising from the use of the dynamic fundamental
solution (c¢) plates and membranes of arbitrary shape subjected to any kind of
loading and boundary conditions can be considered; (d) The accuracy of the
results is proved on a wide frequency range for both free and forced vibrations.
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Appendix A

Expressions of the near field of Bessel and Neumann functions of the first kind
of zero and first order:
0<x<3
J,(x) = 1-2.2499997(x/3)’ + 1.2656208(x/3)’ - 0.3163866(x/3)°
+0.0444479(x/3)" — 0.0039444(x/3)" +0.0002100(x/3)" + €
le|< 5,10-8
Y,(x)=(2/7) 1n(§ x)]o(x) +0.36746691 + 0.60559366(x/3)’

-0.74350384(x/3)" +0.25300117(x/3)°
—0.04261214(x/3)" +0.00427916(x/3)" -
0.00024846(x/3)" + ¢
le|< 1.4,10°
xJ,(x) = % —0.56249985(x/3)" +0.21093573(x/3)’ — 0.03954289(x/3)"
+0.00443319(x/3)" — 0.00031761(x/3)"° + 0.00001109(x/3)" + €
le|< 1.3,10°°

xY(x)=(2/7)x ln(—;— x)J,(x) - 0.6366198 +0.2212091(x/3)’
+2.1682709(x/3)" — 1.3164827(x/3)" +0.3123951(x/3)°

—0.00400976(x/3)"° +0.0027873(x/3)" + €
le|< 1.1,107
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Expression of the far field of the Hankel function of the first kind of zero and
first order:

3<x< o0

1 1
J,(x)=x 2f,cos6, Y, =x 2f,sin6,
£, = 0.79788456 — 0.00000077(3/x) - 0.00552(3/x)?
—0.00009512(3/x)’ + 0.00137237(3/x)* — 0.00072805(3/x)’
+0.00014476(3/x)° + €
le|< 1.6,10°

8, = x—0.78539816 — 0.04166397(3/x) — 0.00003954(3/x)*

+0.00262573(3/x)* - 0.00054125(3/x)* -

0.00029333(3/x)° + 0.00013558(3/x)° + &

le|< 7,107

1 1
J,(x)=x 2f,cosB, Y,(x)=x 2f,sin,

f, = 0.79788456 + 0.00000156(3/x) + 0.01659667(3/x)"
+0.00017105(3/x)’ - 0.00249511(3/x)" +
0.00113653(3/x)” - 0.00020033(3/x)’ + &

le|< 4,107
6, = x — 2.35619449 + 0.12499612(3/x) + 0.00005650( 3/x)’
—0.00637879(3/x)’ + 0.00074348(3/x)* +0.00079824(3/x)’
-0.00029166(3/x)’ + €
le|]< 9,107



