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ABSTRACT:

Boundary element methods have played an important role in the

numerical solution of many engineering problems. This overview

attempts to place BEM in context with other boundary methods and

with it's own "before— and after— computer" history.

INTRODUCTION:

This is a personal view of the historical development of boundary

element methods (BEM) and their relationship to boundary methods in

general. My introduction to them was as a PhD student and

Guggenhein Fellow at the Guggenheim Institute for Flight Structures

at Columbia University in the mid-1950's. The director, Prof. H. H.

Bleich, suggested to a new faculty member, Prof. M. B. Friedman, that

he and I (his first PhD student) look at acoustic shock scattering by

underwater structures by replacing the body by some saltus problem,

i.e. surfaces of sources and sinks. There were no boundary elements

per se at that time, but in this group of mixed backgrounds, there was

familiarity with Green's functions, sources and doublets, Huygens'

principle, etc., e.g. Morse and Feshbach'. I came from an applied math

background with a minor in aeronautical engineering and was

surrounded by some of the best faculty in solid and fluid mechanics,

Prof.'s Mindlin, Boley, Herrmann, Freudenthal, Weiner, Salvadori,

Bleich, Arnold and Friedman. I have long felt that this mixture of
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266 Boundary Elements

fluid and solid mechanics gave me a definite historical advantage.

There also was no finite element method to try to emulate — what we

did was in its own context, building on boundary methods in general.

I feel the importance of recognizing the long history of boundary

methods in general and the existence, even today, of alternative points

of view to what we now call BEM. It will be assumed that this

audience has some familiarity with BEM, but not necessarily its

relatives. Underlying everything must remain the reason for having

such methods in the first place, i.e. there are physically based,

engineering problems which require some sort of solution, at least

through mathematical models which represent their salient physical

behavior. To understand where we are requires understanding of

where we came from in all things, computational mechanics included.

Since there are "volume" oriented methods of finite differences

and finite elements, as competitors to boundary methods, one question

is how is a boundary method distinguished from a volume method ?

The view taken here is that a boundary method allows the solution at

individual interior field points directly from boundary values without

requiring any intermediate interior point calculations. Anything else

will be considered a volume method and not part of this discussion,

although definitely part of the overall repertoire of solution methods.

The first step in considering boundary methods themselves is to

distinguish between formulations, i.e. alternative ways of describing a

problem, and computational methods for solving those formulations. In

considering computational methods, there are "numerical methods",

which generally require some discretization of the geometrical domain,

and "approximate methods", which generally require some trunctation

of an infinite series solution, both of which arise here.

BOUNDARY INTEGRAL EQUATIONS AND RELATED FORMULATIONS:

The classical boundary integral equation formulation (BIE), for

which the BEM is the most frequently used solution technique, is

usually understood as based either mathematically on Green's theorem

and/or physically on surfaces of source and doublet distributions.

Consider the problem, in physical terms, to be defined by a set of

source points which produce a solution at a set of field points. If the

source points and the field points are both located on that surface on
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Boundary Elements 267

which the boundary conditions are given, and if the relationship

between these two sets of data is in the form of an integral or

integro-differential equation, as in Green's theorem, we would call this

a boundary integral equation (BIE) formulation. If the integral

equation is then solved by a discretization of the boundary surface

into elements leading to a set of linear algebraic equations on unknown

nodal values (or mean values, Shaw*), we could call this a BEM

solution technique. However, there exist methods which do not place

the source and the field points on the same surface and that there are

methods of solution which do not involve discretization of the

boundary surface into elements. For example, if the source points are

placed on the given boundary but the field points are placed outside

of the original domain, where Green's theorem requires a zero solution

or "null—field", an integral equation on the unknown boundary values

results. This is the classical null—field formulation, to be solved by

either elements or eigenfunction expansions. If field points are placed

both inside and outside the original domain, on simple geometrical

surfaces, and the resulting Green's integrals solved for example by

eigenfunction expansions appropriate to the governing equation and the

simple field point geometries, the unknown boundary values may be

eliminated giving the field point solution directly in terms of the given

boundary values. This is the "T—matrix" method, used widely in

wave scattering and radiation problems, e.g. Varadan and Varadan\ give

an overview of this method based on the original work of Waterman'*.

If the field points are placed on the given boundary surface but the

source points are placed on simple geometrical surfaces outside of the

original domain, these are the "embedding formulations" which may be

solved by either elements or by eigenfunction expansions, i.e.

"embedding solution methods", e.g. Shaw and Huang*. This last

approach actually includes the classical Trefftz method when

appropriately interpreted, Shaw, Huang and Zhao\ These are all still

boundary methods based on "source" distributions and integral

equations. Some of these predate what we call BEM and others were

devloped concurrently with BEM. The whole idea of source/doublet

distributions goes back well beyond what we generally consider to be

the beginnings of our standard BEM approaches. Indeed, Huygen's

principle, developed in the 17** century and described by Baker and
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268 Boundary Elements

Copson^ contains many ideas that relate to modern BEM. Even a

historical development divided into before—computer (B.C.) and

after—computer (A.C.) contains an amazing overlap of boundary

methods.

B.C; BEFORE-COMPUTER YEARS:

The earliest formation and solution of physical problems governed

by partial differential equations were clearly boundary methods. The

classical separation of variables method is based on an orthogonal

eigenfunction expansion, specific to the governing equation, the

geometry and the boundary conditions given, whose coefficients are

determined succesively and directly from the boundary conditions.

The classical Green's function approach gave the solution for all field

points directly in terms of a quadrature of boundary values, using

"the'* Green's function specific to the governing equation, the

geometry and the boundary conditions given, to eliminate any unknown

boundary values. In both cases, interior solutions could be found

directly in terms of that specific interior point and the boundary

values and do not involve any other interior calculations.

While finite difference methods, which are clearly a volume

approach, were the dominant numerical technique during these B.C.

years, some numerical and/or approximate boundary methods were still

present. Consider the classical Trefftz method which involves an

eigenfunction expansion that satisfies the governing equations but does

not form an orthogonal basis set for the the given boundary geometry.

The coefficients of this expansion are found without orthogonality of

the basis set on the given geometry, thus requiring the solution of a

system of linear algebraic equations of order equal to the number of

terms used in the expansion. We can note here that this method is

equivalent to the embedding integral eigenfunction method. This

embedding integral approach was also used in its element form by

"Munk* and by von Karman*. Some early BEM solutions are also B.C.,

e.g. those by Prager*° and by Massonnet^. In fact, the first half of

my own PhD thesis in 1960 on transient acoustic wave scattering and

subsequently my first BEM paper, Friedman and Shaw** was carried

out on a Monroe desk calculator. Since the second half, Shaw and

Friedman^, was done on an IBM 704, this thesis might be 0 C.
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Boundary Elements 269

Boundary integral equation methods (BIE) were also discussed well

B.C., e.g. Proudman^, who regretfully dismissed as requiring too much

computation to be of practical use AT THAT TIME.

A.C.: AFTER-COMPUTER YEARS

It is obvious that the advent of wide access to the digital

computer has led to an explosion of approximate/numerical methods for

the solution of engineering problems. This is as true for FEM as for

BEM, Since there are a number of books on BEM, beginning with the

first proceedings of Cruse and Rizzo^, the first text by Jaswon and

Symm^ and the first teaching text of Brebbia^, with many more to

come, this era will be discussed primarily in the context of particular

techniques. However, it is clear in retrospect that the time was right

for this approach and several groups were independently working on it

including the McDonnell-Douglas group under Smith and Hess, e.g.

Hess*® and Hess and Smith^ and the English group under Jaswon"°, on

potential theory, several U.S. Navy labs, e.g. with Chen and

Schweikert^ , Chertock", Schenck^, etc. on acoustics and the Rizzo

and Cruse team on solids, e.g. Cruse and Rizzo" \ Much of the

earliest work was done on problems in infinite domains and was days

called the surface integral method, the boundary integral method, etc.

The phrase BEM was not coined until the meeting organized by Tom

Cruse and Frank Rizzo in 1975 where it was discussed as a solution

method for the BIE rather than the basis of the method itself. It

seemed more useful to keep the formulation nature clear than naming a

technique to sound like FEM.

SOME SPECIFIC BOUNDARY INTEGRAL FORMULATIONS:

There have been applications of BEM to a variety of physical

problems and corresponding equation types. Numerical solution of

hyperbolic systems often lead to uncoupled systems of linear algebraic

equations due to the finite wave speeds involved — in fact, a

prominent BEM researcher once told me that my first papers on

transient acoustic scattering were not proper BEM studies since I made

use of this "time retardation" to uncouple my algebraic equations and

thus solve no more than an occasional 2X2 system at a sharp corner.

I convinced him that this was BEM, but considering the state of
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270 Boundary Elements

computers at that time, a "kinder" BEM. At my PhD defense in 1959, I

was asked how I would solve a time harmonic wave scattering problem

and I replied that I would start from a rest state and build up to a

steady state as the limit of a hyperbolic system — we were so afraid

of large, e.g. 20 X 20 linear algebraic systems, at that time that this

was considered a reasonable response. Four years later, Banaugh and

Goldsmith^* presented the time harmonic scattering problem, an elliptic

system, using a computer throughout thus illustrating the rapid

changes going on in computational power. Of some historical interest

was the fact that Banaugh was in the audience at the Fourth U.S.

Congress of Applied Mechanics when I presented my 1962 paper and

asked if we had considered time harmonic cases, probably seeing his

current PhD thesis being "scooped". I replied, to his relief, only as a

long time solution to a hyperbolic system. Parabolic systems also

have a definite place in the study of diffusion problems, but it is in

the elliptic realm that BEM has really flourished and this will be the

basis of the rest of this discussion. This is especially true in view of

the fact that both hyperbolic and parabolic systems are routinely

transformed, typically by Laplace or Fourier transforms, into

equivalent elliptic systems in a transform space, solved there and then

inverted back to the time domain. Consider then problems governed by

elliptic partial differential equations as the primary basis for

discussion. The domain under consideration will be referred to as D

and the boundary to this domain as 6D. D may be finite or infinite,

but 5D is assumed to be finite unless stated otherwise. The two

classical elliptic equations considered here will be the Laplace equation

for potential problems and the Helmholtz equation for time harmonic

wave equations. The treatment for elastostatics or time-harmonic

elastodynamics follows much the same pattern as will be discussed for

these examples and will only be explicitly considered when substantial

differences occur. Let us begin with either a Laplace equation or a

Helmholtz equation under Dirichlet boundary conditions for simplicity,

V* u(r) = 0 in D ; u(r) = f(r) on 6D [1-a]

V= u(r) 4- k* u(f) = 0 in D ; u(r) = f(r) on 6D [1-b]

If this is a separable geometry for this equation and boundary
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Boundary Elements 271

condition, classical separation of variables will work. If the problem is

recast into an integral equation by Green's theorem,

= Ic u(r) = { G(r, ?Q) 3u(Fj/3no - u(r<,) 3G(F, ?o)/3no } dS(?o) [2]

SD

where U(?Q) is replaced by f(?o), c=(0, 1/2, 1) for the field point, r,

lying ouside, on (a smooth part) or inside of SD when viewed from D,

and n is the outward normal to SD from D. This integral is taken in a

Cauchy principal value sense for the middle case. The major

difference in formulation between eq. [1-a] and [1-b] is the Green's

function used. Since u is known on 5D, if G is chosen to be zero on

6D — i.e. "the" Green's function — this equation is reduced to a

quadrature of known values for any interior field point, i.e. c = 1,

= I -u(r) = - f(?o) 3G(r, r<,)/3no dS(Fo) [3]

If "the" Green's function is not known, "a" Green's function, usually

but not necessarily the infinite space point source solution, may be

used. With r on £D, this leads

u(f) / 2 = { G(F, ?Q) 3u(?o)/3no - U(?Q) 3G(r, ?o)/3no } dS(?o) [4]

SD

which is the standard direct BIE, involving only boundary values of

the unknowns. This equation may be interpreted as having layers of

sources, G, and doublets, 3G/3n, of strengths 3u/3n and u respectively.

In this sense, the solution u(f) varies from the correct interior

solution for r just inside of SD to zero just outside of SD with an

"average" value of (1/2) u(r) used for r on SD. Again, for a Dirichlet

problem, U(?Q) is known on 5D making this an integral equation of the

first kind on 3u/3n. It could be converted to an integral equation of

the second kind by differentiating eq. [2] in the outward normal

direction to D at that prospective field point before allowing f to

actually approach SD and then going through the limiting process, e.g.

Shaw and Friedman^, resulting in

(3u(r)/3n)/2 = {3G(F,Fo)/3n 3u(Fo)/3no - U(FQ) 3*G(F,Fo)/3n<,3n}dS(Fo) [5]

SD
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272 Boundary Elements

where the unknown now appears outside of as well as within the

integral. Similar results are found for Neumann and mixed boundary

condition problems. Before examining solution methods for these

forms, let us consider some "variations on this theme". If r is placed

outside of <fD, c = 0 and we have a "null— field" formulation, e.g.

0 = I { G(r, ?Q) 3u(?o)/3no - U(?Q) 9G(r, ?o)/9no } dS(?o) [6]

SD

which also involves only boundary values. If instead of using the

mathematical form of Green's theorem, and its corresponding physical

interpretation in terms of layers of sources and doublets, we went

directly to such layers of arbitrary strength, cr(r) on &D, we would

have the indirect formulations, e.g.

= IuCr) = a(fo) G(f, ?Q) dS(fo) [7]

<?D

with the normal derivative, 3u(r)/3n, on SD given by

[8]

S

where the + and — refer to an approach to the boundary from inside

and outside of D respectively. Eq. [7] allows cr to be found by placing

r on 5D and using the given boundary condition. Eq. [7] and eq. [8]

then determine u and 3u/3n anywhere in terms of these boundary

source strengths.

The T matrix and embedding equation methods are in a sense

complementary methods both of which avoid the difficulty of principal

value integrals. The T-matrix method uses the standard boundary

integral form of eq. [2] but for solution points r, interior to D and r*

exterior to D, i.e. as

u(r<) = { G(?t, ?Q) 3u(?o)/3no - U(?Q) 3G(r\, ?o)/3no }dS(?o) [9-a]

0 = { GCre, ?o) 3u(?o)/3no - u(?o) 3G(?e, ?o)/3no } dS(r̂ ) [9-b]

6D

Eq. [9-b] allows information about 3u/3n on SD to be related to the

given Dirichlet boundary conditions on u, typically in the form of
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Boundary Elements 273

coefficients of an eigenvalue expansion, while eq. [9-a] incorporates

that information to yield a relationship between u at some interior

field point and the given boundary condition. The actual values of

3u/9n on 5D need never be determined explicitly.

The embedding integral formulation reverses locations of source

and solution points and is more closely related to the indirect approach

of eqs. [7] and [8], Here the "sources" of strength a(r) are placed on a

convenient surface exterior to the domain D and the solution points

are taken on 5D. The exterior embedding surface, S«, is usually taken

to be a simple geometric form, e.g. a circle in 2D or a sphere in 3D.

The governing integral equation is then

u(f) = oifo) G(r, ?o) dS(fo) [10]

Se

with r on the original boundary SD. This integral form can then be

solved for a(?o). Once a(?o) is known, the solution point may be placed

anywhere in D to determine u(r) there. Derivatives of u may be found

by differentiating eq. [10] since only G(r, ?Q) is affected by derivatives

in the r coordinate system. Clearly doublets or combinations of

sources and doublets of varying strengths could be used qually well.

SOME BOUNDARY SOLUTION METHODS:

The above section dealt with boundary formulations. The actual

numbers will come out of solution techniques which are categorized

into "numerical", typically element methods, and "approximate",

typically eigenfunction expansion methods. Both of these approaches

have been used successfully, even on the same formulations although

it does appear that certain formulations have come to be thought of in

terms of one specific approach. Thus, the boundary integral

formulation of eq. [4] is inevitably tied to an element solution

technique while the T-matrix formulation of eqs. [9-a] and [9-b] is

always solved by eigenfunction expansions. This is fine as long as the

restriction to one approach is based on careful consideration of other

approaches which have then been found lacking in some respect or

other and not due to lack of knowledge of alternatives. A number of

simple illustrations are given in an appendix, but actual numbers are

left to the literature. It is clear that there are unanswered questions
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274 Boundary Elements

as to why certain solution methods do not appear to have been tried

with some of these formulations. One goal then of future BIE study

should be to investigate why these apparent omissions have occured,

but some statements may be made in general even now. Eigenfunction

expansions require some expansion of the fundamental Green's function

in an appropriate set of basis functions, i.e. the eigenfunctions for

some geometry not necessarily that given in the problem but typically

of some similar shape, size, or other property. Such formulations

have two distinct forms, one for If I > \VQ\ and another for Irl < l?ol.

Such distinctions may be made when f lies on one surface completely

within or without of the surface containing FQ as is the case for null-

field methods, T-matrix methods and embedding methods, all of which

have eigenfunction expansion solution procedures. However, for

boundary integral formulations where Irl may be both larger than and

less than Ifgl depending on their relative locations on the same surface,

this Green's function expansion may not be divided into such distinct

forms. This does not mean that this approach can not be used for BIE

but helps explain why it has not been used in practice - in fact, I am

aware of only one attempt to use it, Sharma^, and even this was not a

direct expansion. Nevertheless, this topic is currently being studied

for one very good reason. As BEM codes go from two to three

dimensions, the number of elements and thus the size of the influence

coefficient matrices increases drastically. However the calculation of

each coefficient is only slightly more difficult in the 3D case than in

the 2D case, i.e. the standard Gauss coefficients are known either way.

The same problem by eigenfunction expansions would have 3D basis

functions but probably not too many more terms than in the 2D

eigenfunction expansion, i.e. the number of unknown expansion

coefficients would not increase dramatically. However, the calculation

for each term in the corresponding matrix relating these expansion

coefficients would certainly have increased substantially. Thus while

the assembly time for either solution approach might be comparable,

the storage required is far less for the eigenfunction approach.

Although this might appear to be a minor problem since memory is

becoming virtually unlimited, the number of elements being used in

ever increasingly difficult problems is also increasing. In order to

have solution codes that do not require suoercomputer capabilities, it
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Boundary Elements 275

might pay to consider this distinction. Nevertheless, it appears that

DEM will stand as the "method of choice" for general applications

since it is far more flexible in its application to a variety of problems

than ia the T-matrix which requires specific eigenfunction choices for

each case.
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Boundary Elements 277

APPENDIX: SOLUTION METHODS

I) ELEMENT METHODS:

a) Classical BEM: Here eq. [4] is solved numerically by dividing

the boundary 6D into M elements and assuming some functional

variation of the dependent variable over each element. The simplest

approach uses a 'constant' shape function for this variation (which

may be better viewed as a mean value, e.g. Shaw'. The field point, f,

is taken successively at some representative location, e.g. the

midpoint, of each element providing M equations on the M unknown

dependent values.

M
Ut/2 = y^ | (G(?t, TO) 3u(?o)/3no — u(?o) 3G(r\,

M

r/i p
] (G(?,,

" .
G(r<, TQ) dS(?o)— u^

(3u/3n)fc G,% - Uj, H,t ; i = 1, . .M [A-i]
k-1

For a Dirichlet problem, u* is known as f^ ; the solution for (3u/3n)% is

Ou/3n)k = [ Gifc r' [ 0.5 8^ + HU 1 fj [A-2]

Other boundary conditions lead to other forms of essentially this same

result. This is a collocation method leading to an M X M system of

linear algebraic equations; other forms of solution are also possible,

e.g. over-determined systems solved by least-mean-square error

methods.

b) Null - field Methods: Here the field or solution point is placed

at M locations outside of D as in eq. [6J. The same discretization as

above leads to

M r
0 =]>2 ( G(r\, TO) 3u(?o)/3no — U(?Q) 3G(r\, ro)/3no }dS(?o)

" ™ *°T - - . rG(rt, TQ) dS(ro)— ^k 3G(?t, rr,)/3ng dS(?o)

Gtk - Ufc H,fc ; i = 1, . . M [A-3]
k-1
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278 Boundary Elements

which again represents a system of M equations on M unknowns. The

coefficients G(% and H,% are obtained from non-singular integrals; the

resulting algebraic system is not as robust as BIiM, undoubtedly due

to the lack of the strong diagonal term provided by the singularity

contribution.

c) Indirect BEM: Here an intermediate variable is used, in this

case representing the strength of a source layer, o-(r). The same

boundary discretization is used leading to

M r M
a(?o) G(?j, ?o) dS(?o) = ">"% G^ ; i = 1, . M [A-4]

For a Dirichlet problem, this may be solved for the values o*̂ .. Then

values of u(r) in the field may be found by eq. [7] with r off of the

boundary. The jump in normal derivative at the boundary by

M
Ou(?)/9n_,+), - (4-/-X1/2) a, +• ]>[] 0% H<* [A-5]

k-1

d) Embedding Element Method: The approximation of eq. [10] by

an element approach involves subdividing Sc into segments. In 2D, S*

could be a circle for convenience if the original geometry is roughly

of equal dimensions in all directions, although other embedding

geometries could be used for more 'distorted' goemetries. Then these

subdivisions are simply circular arcs on which integrations may be

readily performed without geometrical shape function approximations.

Obviously, the same advantage holds in three dimensions as well.

Taking N segments, of equal size unless there is some clear reason to

do otherwise, and average values of o*,the segmentation of eq. (2)

M
u(r,) = > o"% G(?t,?e) dS(r«) = yVfc G^ ; i = 1,. . ,M [A-6]

r
= ]>2 o"% G(?t,?e)

k-1 J

i.e. a system of M equations on the M unknowns, solved by

collocation. The coefficients G,% are calculated from non-singular

integrals.

II) EIGENFUNCTION EXPANSION ME-THODS:

a) T-matrix Methods and Null-field Methods: The T-matrix

method is the standard eigenf unction expansion method comparable in
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Boundary Elements 279

significance to the BEM for element methods. It is used primarily on

Helmholtz exterior wave scattering and radiation problems, but could

be applied to other problems in essentially the same format. The

variables u and 3u/3n on the boundary as well as the free space

Green's function, G, and the field values for u are expanded in a basis

set of linearlly independent eigenfunctions which satsify the governing

equation although not necessarily the appropriate boundary conditions

on the given geometry. An origin within the surface SD is used for

both interior and exterior problems; an exterior radiation problem will

be considered here. A surface, Sa, is drawn outside of D, e.g. for a

circle in 2D or a sphere in 3D this could simply be IrJ = a where a is

always less than the value of TQ to the boundary, SQ, from some

central origin. Then these expansions are

a% 0k(ro) ; ?o e 5D [A-7]
k~0

00

k-0
CO

G(fa, fo) = ^> ] 7m 0m(fa) m̂(fq) ; I fa I < I TQ I [A-9]
m-0

and eq. [9-bj becomes

00 00 r

m-0 k-0 ££ jQ

Since the 0™ are linearly independent, this provides a relationship

between the coefficients a and 0,

CO CO
Y] 0k ?km = %] Oik Qkm [A-ll]
k-0 k-0

which can be solved for a given /3, /3 given a, etc. At this point, this

is really the null-field method. However, the T-matrix method goes

one step further. Taking a second surface within D, e.g. a circle or

sphere or radius b such that b > I ?Q I, the field at this surface can

also be expanded in this set of basis functions except that the form of

the Green's function expansion changes slighty.
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280 Boundary Elements

CO
a^ <Mr\) ; ?b e D

m-0

k-0

Then eq. [9-a] becomes

oo
tm iMr*) = ̂  7m 0m(?a)

m-0 m-0 k-0

r
3* #*(?<,) 0m(

r
0»

where the summation index has been rearranged for convenience from

the first set of expansions. The integrals are similar to those of the

first set, with modified functions. However, since the 0™ are again

linearly independent, this reduces to

with no sum over m and sums over the other indices indicated by

repeated values. This relates the field values of u to the boundary

values of u directly in this Dirichlet case; other forms of boundary

condition would follow this same procedure.

b) Embedding Methods: Here the sources are placed on an

'embedding' surface exterior to D, e.g. on a circle in 2D or a sphere in

3D (although other geometries could also be used). All functions are

again expanded in terms of a set of linearly independent basis

functions which satisfy the governing equation. In this case however,

these are chosen to also be orthogonal over the embedding surface.

Then for an exterior problem, the embedding surface will have I r« I <

I ?Q I and eq. [101 becomes

[A-16]
k-0 ^ ™~® k-0

or since the # are linearly independent and U(TO) is known,

I *'
f̂c(?e) dS(?e)

m-0 o m-0Oe

which can be solved for &m and thus give u(r) everywhere as an

expansion in terms of )̂%; this is essentially the Trefftz method.
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