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ABSTRACT 
This paper is devoted to effective solving of magnetic hysteresis problems in 3D modeling of 
accelerator magnets. It is proposed to use boundary elements and a reduced scalar magnetic potential 
in the air and finite elements, in addition to a full scalar magnetic potential in ferromagnetic materials. 
There is no need to mesh the air domain by using that approach. Also, it allows nonlinear and 
inhomogeneous magnetization in ferromagnets to be taken into account. Numerical simulation is 
carried out using three different models of hysteresis: the Preisach model, the model based on dry 
friction and the Vinokurov model. To verify the accuracy of the developed approach, the simulation 
results are compared with the magnetic field measurements for the deflecting accelerator magnet. 
Keywords:  finite elements, boundary elements, magnetic field, hysteresis, total and reduced potential. 

1  INTRODUCTION 
Designing acceleration magnets requires effective solving of magnetostatic problems. The 
most often used method to solve such problems is the finite element method. Employing  
the boundary element method to solve magnetostatic problems is proposed in two studies by 
Andjelic et al. [1], [2]. However, even though the boundary element method significantly 
simplifies the mesh construction, it can only account for nonlinear properties of 
ferromagnetic materials in ineffective way, while taking nonlinearity into account is 
important for obtaining an accurate solution of real problems. Thus, the coupled approach 
with the use of both finite and boundary elements is gaining popularity in recent years [3], 
[4]. Most notably, this approach is used in CERN and is described in Russenschuck [5]. 
However, the approach presented in this book employs vector magnet potential. This is 
 less effective for solving various problems than the approach based on two scalar potentials 
– total and reduced. This idea was first proposed in Simkin and Trowbridge [6], but the 
algorithm used for combining these potentials was overcomplicated which led to low 
popularity of the method. In this paper, we propose a simplified formulation with two 
potentials for the coupled finite and boundary element method. 
     One more difference from the existing works is the employment of magnetization instead 
of magnetic permeability. This enables us to account for hysteresis effects in ferromagnetic 
materials, which significantly improves the accuracy of modeling in some situations. This 
paper presents a comparison of computational results using several hysteresis models with 
the magnetic field measurements obtained from a physics experiment. 

2  MATHEMATICAL MODEL 
Let us consider quasistatic magnetic problems, i.e. the problems where eddy currents and 
displacement currents are not taken into account. Those problems are described by a special 
case of Maxwell’s equations: 

 ∇ ൈ 𝐇 ൌ 𝐉, (1) 

 ∇ ⋅ 𝐁 ൌ 𝟎, (2) 

where 𝐇 is magnetic field intensity, 𝐁 is magnetic induction, and 𝐉 is external current density. 
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     Instead of a traditional relation between 𝐇 and 𝐁, i.e. 𝐁 ൌ μ𝐇, let us use a more  
general one: 

 𝐁 ൌ μ଴ሺ𝐇 ൅ 𝐌ሻ, (3) 

where μ଴ is magnetic permeability of vacuum, and 𝐌 is magnetization. Let us consider that 
the computational domain Ω is simply connected, and its boundary ∂Ω can be divided into 
two parts 𝛤ு and 𝛤஻, on which homogeneous boundary conditions are specified: 

 𝐇 ൈ 𝐧|௰ಹ ൌ 0, (4) 

 𝐁 ⋅ 𝐧|௰ಳ ൌ 0, (5) 

where 𝐧 is an external normal to the domain. Let us seek 𝐇 in the form of 

 𝐇 ൌ 𝐇௘௫௧ െ ∇𝑢, (6) 

where 𝑢 is a scalar magnetic potential, and 𝐇௘௫௧ is the external field that should satisfy the 
condition of eqn (7): 

 ∇ ൈ 𝐇௘௫௧ ൌ 𝐉. (7) 

     A solution of the magnetostatic equations in an unbounded homogeneous domain can be 
used as the external field. It can be obtained in an explicit form of the Biot–Savart Law [7]: 

 𝐇௘௫௧ሺ𝐱ሻ ൌ
ଵ

ସగ
න

𝐉ൈሺ𝐱ି𝐲ሻ

|𝐱ି𝐲|య
ఆ

𝑑𝐲. (8) 

     Note that the field 𝐇௘௫௧ presented in the way above also satisfies eqn (9): 

 ∇ ⋅ 𝐇௘௫௧ ൌ 0. (9) 

    Since the domain Ω is simply connected, the existence of the scalar potential 𝑢 satisfying 
eqn (9) follows from ∇ ൈ ሺ𝐇 െ 𝐇௘௫௧ሻ ൌ 0 according to Helmholtz’s theorem. Thus, eqn (1) 
is fulfilled and one needs to seek for potential satisfying eqn (2). The obtained scalar potential 
is called a reduced potential because to calculate the magnetic field one needs to add the 
external field 𝐇௘௫௧ to it. In case 𝐌 is dependent on field 𝐇, this could be inconvenient because 
of significant computational costs required to obtain field 𝐇௘௫௧. To avoid this, the formulation 
with coupled total and reduced scalar potentials can be used. Let us show that an analogous 
formulation can be obtained in a simpler way than that described in Simkin and Trowbridge 
[6]. To do that, it is enough to modify the external field 𝐇௘௫௧. Let us divide the computational 
domain Ω into two parts: domain Ω଴ with no magnetic materials (𝐌 ൌ 𝟎), and domain Ωெ 
with no currents (𝐉 ൌ 𝟎). Let Γூ be the interface between these domains. Fig. 1 shows the 
described division. 
 

 

Figure 1:  The division of the computational domain. 
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     Let us require that the modified external field 𝐇෩௘௫௧ not only satisfies eqn (7) but also 
vanishes in the domain Ω୑. Thus, field 𝐇 in this domain is defined by the scalar potential 
only, i.e. the potential becomes total in this domain. 
     To modify the external field in this way, it is sufficient to ensure that eqn (7) is fulfilled 
in the domain Ω଴ and the tangential part of the external field vanishes on the interface Γ୍ . 
This can be done if the external field is represented in the following way: 

𝐇෩௘௫௧ ൌ 𝐇௘௫௧ െ ∇ℎ, (10) 

where function ℎ should satisfy the condition 

𝛻ℎ ൈ 𝐧|୻಺ ൌ 𝐇௘௫௧ ൈ 𝐧|୻಺. (11) 

Lemma 1: A continuous function ℎ satisfying eqn (11) exists if, and only if, the integral of 
the currents bounded by a closed contour 𝐶 is equal to zero for every 𝐶 lying in Γ୍ . 
    Proof: From the theorem about magnetic field circulation (integral representation of eqn 
(7)), it follows that a circulation of 𝐇௘௫௧ around any contour is equal to the integral of the 
currents bounded by that contour. Considering this, the lemma is equivalent to the 
following: for the existence of the function ℎ it is necessary and sufficient that the 
circulation of 𝐇௘௫௧ around any contour lying in Γ୍ was equal to zero. Necessity follows 
from the circulation of the gradient of a continuous function being equal to zero. 
     Sufficiency can be proved constructively. Firstly, let us consider a case when the boundary 
Γ୍  is connected. Let us select some point on the boundary where ℎ will be assumed to vanish. 
From the circulation of 𝐇௘௫௧ being equal to zero it follows that the work of the vector field 
𝐇௘௫௧ is independent from the integration path. Thus, the value of the function ℎ in an arbitrary 
point can be defined as the work of 𝐇௘௫௧ from this point to the point where ℎ is equal to zero. 
In case the boundary is not connected, ℎ could be analogously defined on each connected 
component. Outside of the surface Γ୍ , the function ℎ can be extended into the domain Ω଴ in 
any continuous way.  
     Also note that the sufficient condition for the existence of ℎ is Ω୑ being simply connected. 
However, this condition is not necessary, e.g., Fig. 2 shows a domain Ω୑ for which 
conditions of Lemma 1 are fulfilled, thus, function ℎ exists. Note that the conditions of 
existence of function ℎ almost do not reduce the applicability of the proposed method. This 
is due to the fact, that if the contour around the current exists inside the magnetic material,  
it is usually the case when the effects of eddy currents are significant and should be  
taken into account. 

Figure 2:  Example of not simply connected domain Ω୑. 
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     In practice, instead of calculating the work, function ℎ can be obtained as a solution of a 
best approximation problem 

 ℎ ൌ arg min
௧

‖𝐇௘௫௧ െ ∇𝑡‖௅మሺ௰಺ሻ. (12) 

3  VARIATIONAL FORMULATION 
To obtain a solution of the magnetostatic problem, one need to seek potential 𝑢 that satisfies 
eqn (2) in the domains Ω଴ and Ωெ. In addition, the continuity of the normal part of 𝐁 should 
be ensured on the interface between the domains. Firstly, let us consider the domain Ωெ. In 
this domain, the potential is total, and eqn (2) takes the form 

 ∇ ⋅ ሺെ∇𝑢 ൅ 𝐌ሻ ൌ 0. (13) 

     The normal part of the field 𝐁 on the boundary of the domain Ωெ can be presented in the 
form  

 
ଵ

ఓబ
𝐁 ⋅ 𝐧 ൌ െ

డ௨

డ௡
൅ 𝐌 ⋅ 𝐧. (14) 

     In this domain, we use the finite element method for the approximation of the potential. 
To do so, we rewrite eqn (13) in the weak form using the Galerkin method 

 ሺ𝛻 ⋅ ሺെ𝛻𝑢 ൅ 𝐌ሻ, 𝑣ሻஐಾ ൌ 0, (15) 

where ሺ⋅,⋅ሻ௑ denotes an inner product of the space 𝐿ଶሺ𝑋ሻ, 𝑢, 𝑣 ∈ 𝐻଴
ଵሺ𝛺ெሻ, and 𝐻଴

ଵ is a Sobolev 
space which is defined as follows: 

 𝐻଴
ଵሺ𝛺ெሻ ൌ ሼ𝑓|𝑓 ∈ 𝐿ଶሺΩெሻ, ∇𝑓 ∈ 𝐿ଶሺΩெሻ, 𝑓|୻ಹ ൌ 0ሽ. (16) 

     We integrate eqn (15) by parts 

 ቀെ
డ௨

డ௡
൅ 𝐌 ⋅ 𝐧, 𝑣ቁ

డஐಾ
ൌ ሺെ∇𝑢 ൅ 𝐌, ∇𝑣ሻஐಾ. (17) 

     We replace the left part with the normal part of 𝐁, according to eqn (14), and employ the 
boundary conditions. After that, we have 

 ቀ
ଵ

ఓబ
𝐁 ⋅ 𝐧, 𝑣ቁ

௰಺

ൌ ሺ𝐌, ∇𝑣ሻஐಾ െ ሺ∇𝑢, ∇𝑣ሻஐಾ. (18) 

     Secondly, let us consider the domain Ω଴. In this domain, the potential is reduced. If we 
extend function ℎ in a way that it is harmonic, then eqn (2) in this domain is reduced to the 
Laplace’s equation  

 Δ𝑢 ൌ 0. (19) 

     The normal part of the field 𝐁 on the boundary of the domain Ω଴ can be presented in the 
form  

 
ଵ

ఓబ
𝐁 ⋅ 𝐧 ൌ 𝐇௘௫௧ ⋅ 𝐧 െ

డ௛

డ௡
െ

డ௨

డ௡
. (20) 

     We use the boundary element method for the approximation of the potential in this 
domain. The approach used is based on Steinbach [8]. We will employ the fact that the 
solution of the Laplace’s equation can be presented in the form 

 𝑢ሺ𝑦ሻ ൌ න 𝑈∗ሺ𝐱, 𝐲ሻ
డ

డ௡
𝑢ሺ𝐱ሻ𝑑𝑆

பஐబ

െ න
డ

డ௡ೣ
𝑈∗ሺ𝐱, 𝐲ሻ𝑢ሺ𝑥ሻ𝑑𝑆௫

பஐబ

, (21) 
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where 𝑈∗ሺ𝐱, 𝐲ሻ is the fundamental solution of the Laplace’s equation. From this equation, we 
can obtain the boundary integral equations  

 𝑢 ൌ V
డ௨

డ௡
൅ ቀ

ଵ

ଶ
I െ Kቁ 𝑢, (22) 

 
డ௨

డ௡
ൌ ቀ

ଵ

ଶ
I ൅ K'ቁ

డ௨

డ௡
൅ D𝑢, (23) 

where V is a single layer potential operator, K is a double layer potential operator, and D is a 
hypersingular integral operator. 
     After substituting the flows in the second equation by the expression from the first 

equation, we can obtain the equation for a relation between 𝑢 and 
డ௨

డ௡
: 

 
డ௨

డ௡
ൌ ൬D ൅ ቀ

ଵ

ଶ
I ൅ K'ቁ Vିଵ ቀ

ଵ

ଶ
I ൅ Kቁ൰ 𝑢 ൌ S𝑢, (24) 

where S is the Steklov–Poincare operator. 
     We rewrite eqn (20) in the weak form using the Galerkin method 

 ቀ
ଵ

ఓబ
𝐁 ⋅ 𝐧, 𝑣ቁ

డஐబ

ൌ ሺ𝐇௘௫௧ ⋅ 𝐧, 𝑣ሻడஐబ െ ቀ
డ௛

డ௡
, 𝑣ቁ

డஐబ
െ ቀ

డ௨

డ௡
, 𝑣ቁ

డஐబ
, (25) 

where 𝑢, 𝑣 ∈ 𝐻଴
ଵ ଶ⁄ ሺ𝜕Ω଴ሻ, and 𝐻଴

ଵ ଶ⁄  is a Sobolev space which is defined as follows: 

 𝐻଴
ଵ ଶ⁄ ሺ𝜕Ω଴ሻ ൌ ሼ𝑓|∃𝑔 ∈ 𝐻ଵሺΩ଴ሻ: 𝑔|డஐబ ൌ 𝑓, 𝑓|୻ಹ ൌ 0ሽ. (26) 

     Using the Steklov–Poincare operator, this equation can be transformed into the following 
form of eqn (27): 

 ቀ
ଵ

ఓబ
𝐁 ⋅ 𝐧, 𝑣ቁ

୻಺

ൌ ሺ𝐇௘௫௧ ⋅ 𝐧, 𝑣ሻ୻಺ െ ሺSℎ, 𝑣ሻ௰಺ െ ሺS𝑢, 𝑣ሻడஐబ. (27) 

     To obtain the final equation, one needs to equate the normal components of 𝐁: 

 ሺS𝑢, 𝑣ሻడஐబ ൅ ሺ∇𝑢, ∇𝑣ሻஐಾ ൌ ሺ𝐇௘௫௧ ⋅ 𝐧, 𝑣ሻ୻಺ െ ሺSℎ, 𝑣ሻ୻಺ ൅ ሺ𝐌, ∇𝑣ሻஐಾ, (28) 

where 𝑢, 𝑣 ∈ 𝐻଴
ଵሺΩெሻ ∪ 𝐻଴

ଵ ଶ⁄ ሺ𝜕Ω଴ሻ. 

4  DISCRETIZATION INTO SYSTEM OF EQUATIONS 
To seek 𝑢 using the coupled finite and boundary element method, let us introduce a finite 
dimensional subspace 𝑉௛ of the space 𝐻଴

ଵሺΩெሻ ∪ 𝐻଴
ଵ ଶ⁄ ሺ𝜕Ω଴ሻ. Let the functions 𝜓௜ ∈ 𝑉௛ form 

a basis of the space 𝑉௛. Then the projections of the potential 𝑢 and the function ℎ onto the 
space 𝑉௛ can be presented in the following form: 

 𝑢 ൌ ෌ 𝑞௝௝
𝜓௝,   ℎ ൌ ෌ 𝑟௝௝

𝜓௝, (29) 

where 𝑞௝ and 𝑟௝ denote weights of basis functions. Then we can rewrite eqn (28) as a system 
of equations: 

 ሺ𝐒஻ாெ ൅ 𝐒ிாெሻ𝐪 ൌ 𝐟ு െ 𝐒஻ாெ𝐫 ൅ 𝐟ெ, (30) 

where matrix 𝐒஻ாெ is an approximation of Steklov–Poincare boundary element operator, 
𝐒ிாெ is a finite element stiffness matrix,  

 𝑓௜
ு ൌ ሺ𝐇௘௫௧ ⋅ 𝐧, 𝜓௜ሻ୻಺, (31) 
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 𝑓௜
ெ ൌ ሺ𝐌, ∇𝜓௜ሻஐಾ. (32) 

     Let us consider the calculation of the contributions from the magnetization 𝑓௜
ெ. Let the 

domain Ωெ be divided into finite elements Ω௞. We assume the magnetization is constant on 
elements Ω௞ and also is dependent on the mean value of the field 𝐇 on this element 

 𝐇෡௞ ൌ
ଵ

|ஐೖ|
׬ 𝐇ஐೖ

𝑑𝛺, (33) 

where |Ω௞| is the volume of the element Ω௞. If we denote 

 𝐆௝
௞ ൌ ධ ∇𝜓௝𝑑Ω

ஐೖ
, (34) 

then the mean value of 𝐇 can be calculated using eqn (35): 

 𝐇෡௞ ൌ െ
ଵ

|ஐೖ|
෍ 𝐆௝

௞

௝
𝑞௝. (35) 

     Then the contributions from the magnetization 𝑓௜
ெ can be written as 

 𝑓௜
ெ ൌ ∑ 𝐌௞ ሺ𝐇෡௞ሻ ⋅ 𝐆௜

௞. (36) 

     Eqn (30) is nonlinear, because contributions 𝑓௜
ெ are dependent on the vector of weights 

𝐪. Let us define a residual vector, whose norm should be minimized 

 𝐑ሺ𝐪ሻ ൌ ሺ𝐒஻ாெ ൅ 𝐒ிாெሻ𝐪 െ 𝐟ு ൅ 𝐒஻ாெ𝐫 െ 𝐟ெሺ𝐪ሻ. (37) 

     To minimize the residual, we use the Gauss–Newton method 

 𝐉𝐩௠ ൌ െ𝐑ሺ𝐪௠ିଵሻ, (38) 

 𝜆௠ ൌ arg min
ఒ

‖𝐑ሺ𝐪௠ିଵ ൅ 𝜆𝐩௠ሻ‖, (39) 

 𝐪௠ ൌ 𝐪௠ିଵ ൅ 𝜆௠𝐩௠, (40) 

where 𝑚 is a sequence number of the iteration over nonlinearity, and a vector of zeros  
can be used for 𝐪଴. Matrix 𝐉 is calculated using the weights from the previous iteration via 
eqn (41): 

 𝐉 ൌ ሺ𝐒஻ாெ ൅ 𝐒ிாெሻ െ
డ𝐟ಾ

డ𝐪
, (41) 

where the following eqn (42) can be used to calculate the derivatives of 𝑓௜
ெ  

 
డ௙೔

ಾ

డ௤ೕ
ൌ െ

ଵ

|ஐೖ|
෌ ሺ𝐆௜

௞ሻ்
௞

డ𝐌

డ𝐇
𝐆௝

௞. (42) 

     Note that if the tensor 
డ𝐌

డ𝐇
 is symmetric, the matrix 𝐉 will also be symmetric. 

5  HYSTERESIS MODELS 
To solve the classic problem of magnetostatics, one can employ 𝐌ሺ𝐇ሻ ൌ ሺ𝜇 െ 1ሻ𝐇. 
However, if hysteresis effects should be accounted for, one needs to use a hysteresis model, 
which describes the relation 𝐌ሺ𝐇ሻ. There are a lot of different models and none of them are 
unquestionably the best [9], [10]. In this paper, we consider the three following models. 
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5.1  Preisach model 

The Preisach model is one of the most well-known models of hysteresis [12]. Let us use the 
Preisach model in the form with a one-dimensional distribution for which the Everett function 
can be analytically calculated [13], [14]. A one-dimensional distribution is given by the 
following expression: 

 𝜑ሺ𝑥ሻ ൌ
௔௘ష್ೣ

ሺଵା௖௘ష್ೣሻమ, (43) 

where 𝑎, 𝑏 and 𝑐 are model parameters. The magnetization in this model can be expressed as 

 𝑀ሺ𝐻ሻ ൌ ׬ ׬ 𝜑ሺെℎଵሻ𝜑ሺℎଶሻ𝛾ுሺℎଵ, ℎଶሻ𝑑ℎଵ𝑑ℎଶ, (44) 

where 𝛾ுሺℎଵ, ℎଶሻ can be ൅1 or െ1 depending on the history of 𝐻. This expression can be 
represented as a combination of the Everett function values in some points. The Everett 
function can be obtained analytically by calculating the following integrals: 

 𝐸ሺ𝑥, 𝑦ሻ ൌ න ׬ 𝜑ሺെℎଵሻ𝜑ሺℎଶሻ𝑑ℎଵ𝑑ℎଶ
௛మ

௫

௬

௫
. (45) 

     To obtain a vector model, let us use the method proposed in Mayergoyz [15]: 

 𝐌ሺ𝐇ሻ ൌ ∑ 𝑤௞௞ 𝐫௞𝑀ሺ𝐇 ⋅ 𝐫௞ሻ, (46) 

where 𝑤௞ and 𝐫௞ represent the weights and points of some unit sphere  
quadrature, respectively. 

5.2  Vinokurov model 

The Vinokurov model was proposed in Vinokurov et al. [16]. Let us use this model in the 
form of eqn (47): 

 𝑀ሺ𝐻ሻ ൌ ∑ 𝑤௞௞ 𝑀௦ሺ1 െ
ଵ

ටଵାଶ
ഖబ
ಾೞ

|ு೐,ೖ|
ሻ

ு೐,ೖ

|ு೐,ೖ|
, (47) 

where 𝑤௞, 𝑀௦ and 𝜒଴ are model parameters and 𝐻௘,௞ can be obtained using the following 
update rule: 

 𝐻௘,௞
௡௘௪ ൌ ቐ

𝐻𝑐𝑜𝑠ሺ𝜃௞ሻ െ 𝐻௖,௞ |𝐻𝑐𝑜𝑠ሺ𝜃௞ሻ െ 𝐻௖,௞| ൐ 𝐻௘,௞,
𝐻𝑐𝑜𝑠ሺ𝜃௞ሻ ൅ 𝐻௖,௞ |𝐻𝑐𝑜𝑠ሺ𝜃௞ሻ ൅ 𝐻௖,௞| ൏ 𝐻௘,௞,

𝐻௘,௞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
, (48) 

where 𝜃௞ and 𝐻௖,௞ are model parameters. The vector variant of Vinokurov model will be used 
in eqn (46). 

5.3  Dry friction model 

The main idea of the dry friction model was proposed by Bergqvist [17]. The difference  
of this model from two previous models is that the Bergqvist’s model is a vector model 
 by definition.  
     Let us use the modification described in Henrotte et al. [18] and Henrotte and Hameyer 
[19]. In this model, the reversible component of 𝐇 is expressed as 

 𝐇௥ ൌ ∑ 𝑤௞௞ 𝐇௥,௞, (49) 
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and 𝐇௥,௞ can be obtained by the following update rule: 

 𝐇௥,௞
௡௘௪ ൌ ൝

𝐇௥,௞ |𝐇 െ 𝐇௥,௞| ൑ 𝑟௞,

𝐇 െ 𝑟௞
𝐇ି𝐇ೝ,ೖ

|𝐇ି𝐇ೝ,ೖ|
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  (50) 

where 𝑤௞ and 𝑟௞ are model parameters. The magnetization can be calculated by the following 
expression: 

 𝐌ሺ𝐇ሻ ൌ 𝑀௦𝐿 ቀ
|𝐇ೝ|

௔
ቁ

𝐇ೝ

|𝐇ೝ|
, (51) 

where 
 𝐿ሺ𝑥ሻ ൌ cothሺ𝑥ሻ െ

ଵ

௫
, (52) 

is the Langevin function, 𝑀௦ and 𝑎 is a model parameter. 

6  NUMERICAL EXPERIMENTS 
To compare these three models, let us use the experimental measurements for a deflecting 
accelerator magnet described in Royak et al. [11]. The 3D model of this magnet with current 
coils is shown in Fig. 3.  
 

 

Figure 3:  The 3D model of the deflecting accelerator magnet with current coils. 

     This magnet consists of two materials. For the first material, constructional steel 3, there 
are some measurements described in Vinokurov et al. [16] that allow us to obtain hysteresis 
model parameters of the material. The second material is used for the magnet pole. The 
material is low carbon steel that is close to the pure iron in the chemical composition and 
magnetic properties. However, numerical simulation was complicated due to exhaustion of 
samples of this steel; for this reason, we had to determine the hysteresis model parameters by 
three-dimensional modeling. To select model parameters, a symmetric variation in the 
current was chosen. The current variation is presented in Fig. 4. 
 

 

Figure 4:  Current loops. 
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     Then we will compare models both on the symmetric variation in the current and on an 
asymmetric variation in the current. The hysteresis loops of all three models and 
measurements for the symmetric current are presented in Fig. 5.  
     The parameters of pole material for all three models are found by three-dimensional 
modeling for this loop. As seen, all three models have slight differences from the 
experimental measurements.  
 

 

Figure 5:  Result on symmetric loop. 

     The hysteresis loops of all three models and measurements for the asymmetric current are 
presented in Fig. 6. The parameters of pole material for all three models are the same as for 
the previous modeling for the symmetric loop. As seen, all three models also have slight 
differences from the experimental measurements. 
 

 

Figure 6:  Result on asymmetric loop. 

     Finally, let us present all results to compare in Table 1. The “time” column in this table 
represents the time of the whole loop simulation for a model. 
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Table 1:  Models comparison. 

Model 
Symmetric loop Asymmetric loop 

error, G time, s error, G time, s 
Preisach 4.26 141 3.08 84 
Vinokurov 4.17 154 4.00 129 
Dry friction 3.16 115 2.70 103 

7  CONCLUSION 
The results of the numerical experiments show that the proposed approach based on the 
coupled finite and boundary element method is viable and can be used to solve real physics 
problems. The promising outlook of the approach is also supported by the fact that even on 
the coarse mesh used in the experiments, the difference between computational results and 
the magnetic field measurements is around 1%, which is comparable to the error of  
the measurements. 
     All three hysteresis models have slight differences from the measurements for both current 
loops, so we cannot choose the best model by the accuracy criteria. The simulation times for 
all models are not significantly different, so time cannot be chosen as a criterion either. But 
the number of history parameters that corresponds to the computer memory consumption 
differs significantly. For the results presented in this paper, the minimal memory (2 vectors 
per finite element) was used by the dry friction model and other models used much more 
memory (2 float numbers for each sphere quadrature node per element for the Vinokurov 
model and not less than 3 floats for each sphere quadrature node per element for the  
Preisach model). 
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