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Abstract

A topological sensitivity expression is presented for the objective function defined
as a boundary integral of temperature and heat flux on the morphing boundaries
which are newly generated during the topology optimization process. Since
the objective function is defined by using only the boundary quantities, the
boundary element method (BEM) is used for the heat conduction analyses of two-
dimensional media. A level set-based topology optimization method is assumed
to obtain the optimum shape in two-dimensional heat conduction problems. The
shape of the domain being morphed during the updating process of optimization
can be extracted from the iso-surface of the level set function. The distribution
of the level set function is obtained by solving the evolution equation of the
level set function defined over a fixed design domain. The derivative of the
level set function with respect to fictitious time is assumed to be proportional to
the topological sensitivity of the objective function. In this paper, the objective
function is considered to be defined on the newly generated morphing boundaries
in the optimization process. The topological sensitivity for this case is derived and
is verified through a numerical demonstration.
Keywords: level set method, topology optimization, heat conduction problems,
topological sensitivity, boundary element method.

1  Introduction

Topology optimization has widely been studied in recent years and has shown
a significant ability in structural optimization [1] since it allows not only the
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boundary shapes but also the topology changes of the design domain. For
controlling the shape and topology of the material, level set method is successfully
used. It enables to have a clear boundary expression and can effectively avoid the
gray scale problems caused by using the approaches based on density distributions.
Later, Yamada et al. [2] proposed a topology optimization method using a level set
model incorporating a fictitious interface energy derived from phase field concept,
and by adding a regularization term to the objective function, controlling the
geometric complexity of the expected optimal configurations of the structure was
enabled.

The finite element method (FEM) has been used as a solver of the physical
simulation in most of the foregoing topology optimizations [3–6]. Because the
meshing cost is rather high in FEM, the entire fixed design domain has been
kept used as the computational domain by giving sufficiently small values of
the material properties to the finite elements where the material does not exist
any more after some iterative process of topology optimization. But this trick
does not work well in some applications like harmonic vibrations in which a
small difference in the distribution of the material property dramatically affects
frequency responses. To have a better result, we have to regenerate FEM mesh at
every iterative step of optimization and give the corresponding boundary condition
to the newly generated morphing boundaries.

The boundary element method (BEM) [7] may be a strong alternative to FEM
when the objective function is defined only on the boundary of the structure
because its meshing cost is dramatically lower than that in FEM, particularly for
the mesh regeneration for morphing boundaries. In fact, BEM has been used in
a topology optimization for potential problems [8], and applied recently to heat
problems [9].

In the previous works, we have successfully applied the method to heat
conduction problems to have topology changes of the heat transfer boundaries.
In this paper, we extend the previous method so that the objective function can
be defined even on the newly generated (morphing) boundaries. The topological
sensitivity corresponding to the new objective function is derived accordingly and
is verified through a numerical demonstration.

2  Formulations

2.1 Topology optimization

The level set method is an approach to represent material shapes by using level set
function that is a scalar function of point, φ(x), defined as follows:

⎧⎪⎨
⎪⎩

0 < φ(x) ≤ 1, x ∈ Ω\Γ,
φ(x) = 0, x ∈ Γ,

−1 ≤ φ(x) < 0, x ∈ D\Ω,
(1)
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where D, Ω and Γ denote the fixed design domain, the material domain and the
boundary of Ω, respectively, as shown in Figure 1.

Figure 1: Level set function defined the fixed design domain D.

We consider the following optimization problem where the objective functional
is defined on the boundary Γ.

inf
φ

I =

∫
Γ

f(u, q) dΓ, (2)

subject to

D.E.: ∇ · (−k∇u) = 0 in Ω, (3)

B.C.: u = u on Γu, (4)

q = −k
∂u

∂n
= q on Γq, (5)

q = h(u− u∞) on Γh. (6)

and

G =

∫
D

H(φ(x)) dΩ−Gmax ≤ 0, (7)

where f(u, q) is a function of u and q defined on Γ or part of Γ. u and q = −k ∂u
∂n

are the temperature and heat flux, respectively, n is the outward normal direction
to Γ, u∞ is the ambient temperature, k is the thermal conductivity, h is the heat
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transfer coefficient, and H is the Heaviside function. Gmax is the admissible upper
limit of the area of the material region Ω.

The objective functional Eq. (2) can be augmented by considering Eq. (3)
together, as follows:

inf
φ

J = I(φ) +

∫
D

μ∇ · (−k∇u) dΩ, (8)

where μ is the adjoint variable working as Lagrange’s multiplier.
To obtain the optimum distribution of the level set function φ minimizing J , we

assume that the distribution of φ changes in accordance with a sort of time-like
variable t corresponding to the morphing of the material domain and that ∂φ/∂t
is proportional to T , the topological sensitivity of J . ∂φ/∂t is also assumed to
be proportional to λ that is a penalty parameter for 0 ≤ λ ≤ 1 and ∇2φ that
is considered as the curvature of φ. When the topological sensitivity value is
negative, removing the infinitely small cavity at that point results in decreasing
the objective function value. Hence, ∂φ/∂t has the same sign as the topological
sensitivity. Also, by giving the same sign of ∇2φ to ∂φ/∂t, the variation of φ
becomes smoother. However, since the positive value of the penalty parameter γ
implies that the volume constraint is broken, ∂φ/∂t should be proportional to the
negative sign of γ. Thus, we have the equation for time evolution of the level set
function φ, as follows:

∂φ

∂t
= K(T − λ+ τ∇2φ) in D, (9)

where τ is a regularization parameter that can control the curvature distribution of
φ.

The boundary condition for Eq. (9) can be set as follows:

∂φ

∂n
= 0 on ∂D \ ΓN , (10)

φ = 1 on ΓN , (11)

where K > 0 is a constant, ΓN represents non design boundaries of the fixed
design domain D.

2.2 Topological derivative

The augmented objective function J can be rewritten, after integrating by parts, as
follows:

J =

∫
Γ

f dΓ +

∫
Γ

μq dΓ−
∫
Ω

∇μ · (−k∇u) dΩ. (12)

The objective function suffers from a change, denoted by δJ , when an
infinitesimal region Ωε is removed from Ω. After some manipulations, we obtain
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as

δJ =

∫
Γu

(
μ+

∂f

∂q

)
δq dΓ−

∫
Γq

(
η − ∂f

∂u

)
δu dΓ

−
∫
Γh

[
η − h

(
μ+

1

h

∂f

∂u
+

∂f

∂q

)]
δu dΓ

+

∫
Γε

(
f +

∂f

∂u
δu+

∂f

∂q
δq

)
dΓ−

∫
Ω\Ωε

[∇ · (−k∇μ)] δu dΓ

−
∫
Γε

ηδu dΓ +

∫
Γε

μ(q + δq) dΓ +

∫
Ωε

∇μ · (−k∇u) dΩ, (13)

where

η = −k
∂μ

∂n
= −k∇μ · n, (14)

We assume that the adjoint variable μ is the solution of the following boundary
value problem:

∇ · (−k∇μ) = 0 in Ω, (15)

μ = −∂f

∂q
on Γu, (16)

η =
∂f

∂u
on Γq, (17)

η = h

(
μ+

1

h

∂f

∂u
+

∂f

∂q

)
on Γh. (18)

Also, after some lengthy manipulations, we obtain the leading terms of δu and δq
on Γε as follows:

δu = ε
h(u0 − u∞)

k
ln r +

ε2

r
u0
,1 cos θ +

ε2

r
u0
,2 sin θ, (19)

δq =
ε

r
h(u0 − u∞)− ε2k

r2
u0
,1 cos θ −

ε2k

r2
u0
,2 sin θ. (20)

Using these formulas, we obtain

δJ = 2πεμ0h(u0 − u∞)

+ ε

∫ 2π

0

f dθ + ε

∫ 2π

0

∂f

∂u
(u0

,1 cos θ + u0
,2 sin θ) dθ

+

∫ 2π

0

∂f

∂q

[
h(u0 − u∞)− k(u0

,1 cos θ + u0
,2 sin θ)

]
dθ. (21)
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For a special case when f is given as

f = (u− û)2, (22)

where û is the target temperature on the newly generated boundary Γε, δJ results
in

δJ = 2πεμ0h(u0 − u∞) + 2πε(u− û)2 + o(ε2), (23)

from which we obtain the corresponding topological sensitivity as follows:

T = lim
ε→0

δJ

2πε
= μ0h(u0 − u∞) + (u0 − û)2 (24)

3  Numerical simulation

The correctness of the topological sensitivity expression given by Eq. (24) is
verified.

Let us consider a design domain initially filled with the material entirely in the
area of 4.0 [m]× 4.0 [m] as shown in Figure 2. Temperature boundary condition is
given for the left and top edges of the design domain with a prescribed temperature
ū = 50◦C, while heat flux boundary condition is given for the bottom and right
edges with a prescribed heat flux q̄ = 50 [W/m2]. The thermal conductivity of the
domain is assumed as k = 1.0 [W/(m·K)]. We compare the topological derivative
values calculated by Eq. (24) with the approximate values calculated by finite
difference of the values of the objective functions both for the original domain
and the domain from which a small circular hole is actually deleted. A heat transfer
boundary condition with the ambient temperatureu∞ = 45◦C and the heat transfer
coefficient h = 0.001 [W/(m2·K)] is considered on the circular hole.

The objective function is defined as

I =

∫
Γh

(u − û)2 dΓ, (25)

where û = 15◦C is the target temperature.
The boundary of the square domain is discretized uniformly with 40× 4 = 160

quadratic conforming elements. Also, 40 × 40 = 1600 grids are generated in the
fixed design domain. The topological derivative values are calculated at the sample
internal grid points shown in Figure 3.

The approximate values of the topological derivative is calculated by the
following formula:

J ′
approx =

Joriginal − Jhole

2πε∗
, (26)

where Foriginal and Fhole denote the values of the objective function before and after
the hole is created. ε∗ = 0.0001 [m] is the radius of the hole, and the boundary
of the hole is divided into 32 quadratic elements when Jhole is calculated using
the boundary element method. As shown in Figure 4, the topological derivative
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Fixed design domain
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Figure 2: Fixed design domain used to verify the topological sensitivity
expression.
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Figure 3: Sample points for verifying the topological sensitivity expression.

values obtained using the proposed approach are in very good agreement with
those obtained with the finite difference formula, of which the maximum error is
less than 1%, thus the present formula of the topological derivative is verified.
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Figure 4: Comparison of the topological sensitivities obtained by its present
explicit expression with those obtained by the finite difference scheme.

4  Concluding remarks

In this work, the topological sensitivity expression for heat conduction problems
with objective function defined also on the newly generated morphing boundaries,
on which heat transfer boundary condition is prescribed, is derived and verified.
The correctness of the derived expression for the topological sensitivity is
demonstrated by calculating those values at the internal points in comparison with
those obtained by finite difference scheme.
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