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Abstract 

The coupling of the Boundary Element Method (BEM) / the Traction Boundary 
Element Method (TBEM) and the Method of Fundamental Solutions (MFS) is 
proposed for the transient analysis of acoustic wave propagation problems and 
conduction heat transfer, thereby overcoming the limitations posed by each 
method. The full domain is divided into sub-domains which are modeled using 
the BEM/TBEM and the MFS, and the sub-domains are coupled with the 
imposition of the adequate boundary conditions. 
     The applicability of the proposed method is shown by simulating the acoustic 
behavior of a rigid acoustic screen in the vicinity of a dome and by simulating 
the thermal behavior of a solid ring incorporating a crack in its wall.  
Keywords: coupling BEM, TBEM and MFS, wave propagation, heat diffusion. 

1 Introduction 

The Boundary Element Method (BEM) is one of the most suitable for modeling 
homogeneous unbounded systems containing irregular interfaces and inclusions 
since the far field conditions are automatically satisfied and only the boundaries 
of the interfaces and inclusions need to be discretized. Despite the fact that the 
BEM requires only boundary meshing it still needs prior knowledge of 
fundamental solutions, i.e., Green’s functions. Its efficiency also depends on the 
correct integration of the singular and hypersingular integrals. In addition, for a 
certain level of accuracy, the number of boundary elements depends on the 
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excitation frequency, requiring the use of many boundary elements to model 
high frequency responses. This leads to an undesirably high computational cost. 
     Furthermore, the BEM tends to break down when applied to cracks and very 
thin heterogeneities [1]. The Traction Boundary Element Method (TBEM) is a 
numerical method that solves the thin-body difficulties that arise when modeling 
wave propagation in the presence of very thin heterogeneities such as small 
imperfections, dimensionless cracks or almost imperceptible defects. Different 
attempts have been made to overcome this difficulty [2, 3]. Most of the work 
published refers to the cases of 2D and, in some cases, 3D geometries. Amado 
Mendes and Tadeu [4] solved the case of a 2D empty crack buried in an 
unbounded medium subjected to a 3D source. The solution requires the 
application of a spatial Fourier transform along the direction in which the 
geometry of the crack does not vary. Thus, the 3D solution is obtained as a 
summation of 2D solutions for different spatial wavenumbers. The resulting 
hypersingular kernels were computed analytically by defining the dynamic 
equilibrium of semi-cylinders above the boundary elements that discretize the 
crack. Following that, Tadeu et al. [5] proposed a combined (or dual) 
BEM/TBEM formulation able to solve the case of fluid-filled thin inclusions 
placed in an unbounded medium, and in [6] they applied the same numerical 
techniques to the case of elastic scattering produced by thin rigid inclusions. 
     In recent years, a different class of numerical techniques has become popular 
recently: the so-called meshless techniques that require neither domain nor 
boundary discretization [7–9]. The method of fundamental solutions (MFS) 
seems to be particularly effective for studying wave propagation since it 
overcomes some of the mathematical complexity of the BEM and provides 
acceptable solutions at substantially lower computational cost. Godinho et al. 
[10] studied the performance of the MFS for simulating the propagation of 
acoustic waves in a fluid domain with an inclusion. The authors concluded that 
the method can be very efficient, even outperforming the BEM for this type of 
problem. Godinho et al. [11] subsequently successfully employed the MFS to 
study acoustic and elastic wave propagation around thin structures using a 
domain decomposition technique.  Still, the use of the MFS has its own 
shortcomings and limitations in the presence of thin inclusions and inclusions 
with twisting (sinuous) boundaries.  
 
 

 

Figure 1: Sketch representing the geometry of the problem. 
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     This paper describes the coupling of the BEM/TBEM and the MFS to 
overcome some of the limitations posed separately by each method. These 
coupling formulations are presented for the transient analysis of acoustic wave 
propagation and  heat diffusion problems in the presence of null-thickness and 
thin inclusions. The applicability of the proposed method is shown by means of 
two numerical examples. 

2 Problem definition 

2.1 Acoustic wave propagation 

Consider two 2D irregular cylindrical inclusions, submerged in a spatially 
uniform fluid medium 1 with density 1  (Figure 1). This system is subjected to 

a harmonic line pressure source at O  ,s sx y , which oscillates with a frequency 

 , and originates an incident pressure at  ,x y , 

    
10 1, ,incp x y AH k r   

 
(1) 

where the subscript inc  represents the incident field,    2 2

1 s s
r x x y y    , A  

the wave amplitude, 
1

1

k



 , 1  the pressure wave velocity of the fluid 

medium, and  nH   correspond to second Hankel functions of order n . The 

fluid media 2 and 3 inside inclusions 1 and 2 have densities 2  and 3  and allow 

pressure wave velocities 2  and 3 , respectively. 

     For frequency domain analysis, the pressure ( p ) can be calculated using the 

Helmoltz equation: 

 
 

2 2
2

2 2
( , , ) ( , , ) 0p x y k p x y

x y
 

 
  

 

 
 
 

 (2) 

2.2 Transient conduction heat transfer 

Consider the two irregular 2D cylindrical inclusions, 1 and 2, embedded in a 
spatially uniform solid medium (Medium 1) with thermal diffusivity 1K  (as in 

Figure 1).  Media 2 and 3, inside inclusions 1 and 2, exhibit thermal diffusivities 

2K  and 3K , respectively. Thermal diffusivity 
jK  is defined by j

j j

k

c
 , where 

jk  is the thermal conductivity, j  is the density and jc  is the specific heat of 

each Medium j . Consider further that this system is subjected a line heat source 

placed at O  ,s sx y .  

     The transient heat transfer by conduction in each homogeneous and isotropic 
medium can be described by the diffusion equation in Cartesian coordinates, in 
the frequency domain, 
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 (3) 

     In the frequency domain the incident heat diffusion generated at  ,x y  can be 

expressed by 
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1 1
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 (4) 

3 Boundary integral coupling formulations  

3.1 BEM/MFS coupling formulation 

Considering the inclusion 1, bounded by a surface 1S , and subjected to an 

incident pressure ( incp )/heat field ( inct ) given by incu the following boundary 

integral equation can be constructed: 
a) Along the exterior domain of inclusion 1 (Medium 1)  
 

 

1

1

(1) (1) (1)

0 0 1 0 0

(1) (1)

1 0 0 0 0

( , , ) ( , , , ) ( , , , , )

( , , , , , ) ( , , ) ( , , , , )

n

S

n inc s s

S

c u x y q x y n G x y x y ds

H x y n x y u x y ds u x y x y

  

  

 






 (5) 

     In these equations, the superscript 1  corresponds to the exterior domain; 1nn  

is the unit outward normal along the boundary 1S ; G  and H  are respectively 

the fundamental solutions (Green’s functions) for the pressure/temperature ( u ) 
and pressure gradient/heat flux ( q ), at  ,x y  due to a virtual load at  0 0,x y . 

incu  is the pressure/heat incident field at  0 0,x y , when the point source is 

located at  ,s sx y . The factor c  is a constant defined by the shape of the 

boundary, taking the value 1/ 2  if  0 0 1,x y S  and 1S  is smooth (otherwise 

c=0). 
     Equation (5) does not yet take into account the presence of the neighboring 
inclusion 2, which is modeled using the MFS. The MFS assumes that the 
response of this neighboring inclusion is found as a linear combination of 
fundamental solutions simulating the pressure/heat field generated by two sets of 
NS  virtual sources.  These virtual loads are distributed along the inclusion 
interface at distances   from that boundary towards the interior and exterior of 

the inclusion (lines  2Ĉ  and  1Ĉ  in Figure 2) in order to avoid singularities. 

Sources inside the inclusion have unknown amplitudes (2)
_n exta , while those placed 

outside the inclusion have unknown amplitudes (2)
_n inta . In the exterior and interior 

fluid medium, the reflected fields are given by 
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where (1)G  and (3)G  are the fundamental solutions which represent the 

pressures/temperatures at points ( , )x y  in mediums 1 and 3, generated by 

pressure/heat sources acting at positions _ _( , )n ext n extx y  and _ _( , )n int n intx y . _n ext  

and _n int  are the subscripts that denote the load order number placed along 

lines  2Ĉ  and  1Ĉ , respectively. 
 

 

Figure 2: Discretization of the system: boundary elements, position of virtual
loads and collocation points. 

     The pressure/heat field generated by this second inclusion can be viewed as 
an incident field that strikes the first inclusion. So eqn (5) needs to be modified 
accordingly, 
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(7) 

 
b) Along the interior domain of inclusion 1 (Medium 2) 
 

1 1

(2) (2) (2) (2) (2)

0 0 1 0 0 1 0 0( , , ) ( , , , ) ( , , , , ) ( , , , , , ) ( , , )n n

S S

cu x y q x y n G x y x y ds H x y n x y u x y ds      
 

(8) 

     In eqn (8), the superscript 2 corresponds to the domain inside inclusion 1. 
c) Along the interior and exterior domain of inclusion 2 (Mediums 1 and 3) 

     To determine the amplitudes of the unknown virtual loads (2)
_n exta  and (2)

_n inta , it 

is also necessary to impose the continuity of pressures/temperatures and normal 
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pressure gradients/heat fluxes at interface 2S , boundary of inclusion 2, along 

NS  collocation points  ,col colx y . This must be done taking into account the 

reflected field generated at inclusion 1. Thus the following two equations are 
defined, 
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     In these equations, 2nn  is the unit outward normal along the boundary 2S , 

1

3





  in the acoustic wave propagation case and 3

1

k

k
   for the heat transfer 

problem. 
d) Final system of equations 
     The global solution is obtained by solving eqns (7)–(10). This requires the 
discretization of the interface 1S , boundary of inclusion 1 into N  straight 

boundary elements (see Figure 2).  
     The required two-dimensional Green’s functions for pressure and pressure 
gradients in Cartesian co-ordinates are those for an unbounded medium, 
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in which    2 2

k kr x x y y   
 

and ( , )k kx y
 

correspond to the loaded 

point. The pressure wave velocities in these equations are the ones associated 
with the exterior and the interior fluid of the inclusions  m . 

     The required two-dimensional Green’s functions for temperature and 
temperature gradients in Cartesian co-ordinates are, 
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     The final integral equations are manipulated and combined so as to impose the 
continuity of pressure/temperature and pressure gradients/heat fluxes along the 
boundary of the inclusions 1 and 2. The solution of this system of equations gives 
the nodal pressures/temperatures and pressure gradients/heat fluxes along the 

boundary 1S  and the unknown virtual load amplitudes, (2)
_n exta  and (2)

_n inta , which 

allow the pressure/heat field to be defined inside and outside the inclusions. 
     In the case of null normal pressure gradients/ null heat fluxes or null 
pressures/temperatures along the inclusions boundaries, the eqns (14)–(17) can 
be simplified (not shown). 

3.2 TBEM/MFS coupling formulation 

The Traction Boundary Element Method (TBEM) can be formulated as for the 
case of thin inclusions (Tadeu et al. [12]), leading to the following eqns (13)–
(14) that replace the former eqns (7)–(8), while modeling the first inclusion: 
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(14) 

     Eqns (9)–(10) can be kept the same.  

     The required two-dimensional Green’s functions, 
( )

( , , , , , )
m

k k kG x y n x y   and 

 ( ) , , , , , ,m
n k k kH x y n n x y   are defined by mathematical manipulation of eqns 

(11), (12), while ( , , , , , )inc k s su x y n x y 
  

is obtained from eqns (1), (4), where kn  
and nn  are the unit outward normal for the boundary segments being loaded and 

integrated, respectively. 

4 Verification of the coupling algorithms 

The proposed coupling algorithms (BEM/MFS, TBEM/MFS and combined 
BEM+TBEM/MFS) described have been verified against BEM and MFS 
solutions (not shown). Analysis of the results reveals a very good agreement 
between the proposed coupling solutions and both the BEM and MFS models’ 
solutions for both cases, wave acoustic propagation and heat transfer problems. 

5 Applications 

The applicability of the proposed coupling formulations is illustrated by solving 
two problems. The acoustic behavior of a rigid acoustic screen in the vicinity of 
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a dome is addressed in the first example. The second example concerns the 
computation of the thermal field produced by a heat source in a ring system 
filled with solid material, incorporating defects in its wall.  
     Given that the computations are performed in the frequency domain, time 
responses in the space domain are computed by applying an inverse (Fast) 
Fourier Transform in  . 
     It is essential that   is small enough to avoid contaminating the response in 
the time domain (aliasing phenomena). This is almost eliminated by the 
introduction of complex frequencies with a small imaginary part of the form 

c i     (with 0.7   ). 

5.1 Acoustic application - null-thickness rigid acoustic screen in the vicinity 
of a dome 

A rigid acoustic screen, placed in a vicinity of a dome, is used to illustrate the 
capabilities of the proposed TBEM/MFS formulation. The pressure source is 
placed 4.0 m  from the barrier in the horizontal direction, and 0.5 m  above the 

ground, as Figure 3 shows.  The barrier, 3.0 m  tall, is placed 5.0 m  from a 

semi-circular dome. 
 

 

Figure 3: Geometry of the rigid acoustic screen in the vicinity of a dome and
position of the source and grid of receivers. 

     The wave velocity allowed in the host medium and its density are kept 
constant and equal to 340 m/s  and 31.29 kg/m , respectively.  

     The computations are performed in the frequency domain for frequencies 
ranging from 4 Hz  to 2048 Hz , with a frequency increment of 4 Hz , which 

determines a total time window for the analysis of 0.25 s.  
     The pressure response is obtained over a two-dimensional grid of 26347 
receivers arranged along the x  and  y  directions at equal intervals and placed in 
the vicinity of the acoustic barrier and dome from 0.0mx   to 25.0mx   and 
from  y = 0.0m to y = 10.0m. 
     The barrier is modeled as a rigid screen using the TBEM. It has null-thickness 
and is discretized using an appropriate number of boundary elements defined by 
the relation between the wavelength and the length of the boundary elements, 
which was set at 6. A minimum of 30 boundary elements were used. The dome is 
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assumed to be rigid and simulated by MFS, using a minimum of 200 virtual 
loads/collocation points. The virtual loads are placed 0.5 m  from its boundary. 

This number increases with the frequency according to the relation between the 
wavelength and the distance between collocation points, which was set at 6.   
     The source time dependence is assumed to be a Ricker wavelet with a 
characteristic frequency of 500 Hz . A set of snapshots taken from computer 

animations is presented to illustrate the resulting wave field in the vicinity of 
both the acoustic barrier and dome at different time instants.  
     The system is subjected to a pressure pulse, with a characteristic frequency of 
500.0Hz , which starts acting at 0 st  . Figure 4: shows contour plots of the 

pressure field at different time instants when the waves propagate in the vicinity 
of the acoustic barrier. In the plots, red represents the higher pressure amplitudes 
and blue the lower ones.    
 
 

(a) (b) 

(c) (d) 

 

Figure 4: Pressure wave propagation in the vicinity of an acoustic barrier and 
a dome. Time responses at t = 10.68 ms (a), t = 21.06 ms (b), 
t = 28.69 ms (c) and t = 39.57 (d). 

     At t = 10.68 ms the incident pulse has just hit the acoustic barrier. The 
reflected pulse is still very close to the acoustic barrier. At t = 21.06 ms the 
diffracted waves that originate at the top of the barrier can be seen traveling 
around the screen. At t = 28.69 ms these waves are reflected on the ground, 
travelling upwards. As time passes the first set of reflections from the dome are 
visible ( 39.67 mst  ). 

5.2 Heat transfer application - null-thickness crack placed in the ring’s wall 

A null-thickness crack is placed in the wall as shown in Figure 5(b). The ring’s 
wall is made of concrete ( -1 -11.40 W.m .ºC ,k  -3=2300.0 kg.m , -1 -1880.0J.kg .ºCc  ), 
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the solid filling the ring is steel ( -1 -152.9 W.m .ºC ,k   
-3=7640.0 kg.m ,

-1 -1486.0J.kg .ºCc  ) and the hosting fluid medium is air ( -1 -10.026 W.m .ºC ,k 
-3=1.29 kg.m , -1 -11000.0J.kg .ºCc  ). The inner diameter of the ring is 0.3 m  and 

the wall thickness is 0.2 m (see Figure 5).  The crack is placed in the middle of 

the ring’s wall, forming a circular concentric arc of 45.0o  with a radius of 
0.4 m . This system is subjected to a heat line source placed in the steel medium 

at point O ( 0, 0 ). The source time dependence is assumed to be parabolic (see 
Figure 5(b)).  
 

 
(a) 

 
(b) 

Figure 5: Heat transfer problem: (a) Geometry of the cross-section of the ring 
containing a null-thickness crack. (b) Heat source power time 
evolution. 

     The computations are performed in the frequency domain for frequencies 
ranging from 0.0 Hz  to 0.01026 Hz , with a frequency increment of 

-40.2×10 Hz  (time window is 13.89 h ).  

     The crack is modeled imposing null heat flux along its surface. The null-
thickness crack is discretized using 28 boundary elements. In this example the 
TBEM model is used to simulate the thermal behavior of the crack for which the 
MFS would be less efficient. The other interface surfaces are simulated using the 
MFS that allows a better performance of the global model, without loss of 
accuracy. The inner and outer surfaces of the ring are modelled using a set of 
virtual heat sources placed at 0.05 m  from the outer boundary and 0.03 m  
from inner boundary. The inner and the outer interfaces of the ring were 
modelled using 169 and 452 virtual and collocation points, respectively, evenly 
distributed. 
     The temperature distribution is obtained in a very fine two-dimensional grid 
of 1821 receivers equally spaced along the inner solid, wall and outer hosting
fluid.  
     Figure 6 shows the temperature field at different time instants. To allow a
better interpretation of the results presents the logarithm of the temperature
results. In the first plot, at 1.46 ht   (Figure 6(a)), after the heat source has 
started emitting energy, a circular heat field can be observed in the host medium
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caused by the energy propagation away from the heat source point.  The incident
heat pulse is visible propagating away from the source point without
perturbations as it has not yet reached the wall of the ring. As expected, the 
amplitude of the temperature is uniform along the cylindrical heat wavefronts.  
     The presence of the crack causes a perturbation of the heat transfer along the
cross-section of the wall. As time passes, the heat spreads around the crack. 
However, the receivers placed in the ring’s wall, behind the crack, register
considerably lower temperatures than the receivers placed on the other side, as
can be seen at time 7.93 ht  (Figure 6(b)).  Although the source power has 
already dropped to 0.0 W  at 3 ht  , it is interesting to note that the 

temperature is still rising in some regions of the domain. This means that the
energy introduced at the source point continues to propagate to colder regions in
order to establish the equilibrium condition. 
 

  
(a) (b) 

Figure 6: Temperature distribution in the vicinity of a null-thickness crack 
with null heat fluxes prescribed along its surface, heated by a 
cylindrical line source. Time responses at 1.46 ht  (a) and 

7.93 ht   (b). 

6 Conclusions 

The coupling between Boundary Element Method (BEM)/ Traction Boundary 
Element Method (TBEM) and the Method of Fundamental Solutions (MFS) has 
been proposed for the transient analysis of acoustic wave propagation and heat 
diffusion problems in the presence of multi-inclusions. It was demonstrated that 
the proposed coupling algorithms overcome limitations posed by each method. 
They require less computational power while maintaining adequate accuracy.  
     The TBEM coupled with the MFS, was proposed to overcome the thin-body 
difficulty. The proposed coupling formulations were used to solve two numerical 
examples. The propagation of two-dimensional pressure waves in the vicinity of 
a dome when a null-thickness rigid acoustic screen is placed between this 
structure and an acoustic source was addressed in the first example. The second 
example dealt with heat transient diffusion across a solid filled ring generated by 
a heat source, when an empty null-thickness crack is buried in the ring wall. 
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