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Abstract

For acoustic computations in the mid-frequency range the finite element method
(FEM) is a well-known standard tool. Unfortunately, for increasing frequencies,
i.e. higher wavenumbers, the FEM suffers from the so-called pollution effect
which is mainly a consequence of the dispersion, meaning that the numerical
wavenumber and the exact wavenumber disagree. Using meshfree methods as,
e.g., the radial point interpolation method (RPIM) or the element-free Galerkin
method (EFGM) can reduce this effect significantly.

Moreover, meshfree methods allow the usage of shape functions that can
be adapted to the differential equation to be solved. Consequently, an iterative
method can be derived, which uses a standard meshfree method to compute a first
approximation for the given problem. In a second step this approximation is taken
to construct new shape functions that are able to better reproduce the wave-like
character of the solution. If a few requirements are considered, this method leads
to better results in a more efficient way.

In this paper two meshfree methods, namely an iterative RPIM and an iterative
EFGM, are examined. The methods are compared to the FEM and restrictions for
an efficient applicability are shown.
Keywords: Helmholtz equation, meshfree methods, acoustics, iterative method,
EFGM, RPIM.

1 Introduction

In recent years meshfree methods have attracted more and more attention in several
disciplines of computational mechanics [1]. Especially in the area of computa-
tional acoustics, it is well-known that the standard methods as, e.g., the finite
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element method (FEM) or the boundary element method (BEM) possess some
drawbacks. The FEM suffers from the pollution effect. Especially for high
wavenumbers the results become inaccurate since the dispersion error increases
[2]. For the BEM an increasing number of elements leads to a significantly longer
computation time, since the system matrices are fully populated and possibly non-
symmetric [3].

In contrast, meshfree methods offer some advantages. For the construction of
the shape functions no mesh is needed. Instead, shape functions are constructed
with respect to field points which can be arbitrarily distributed inside the domain
under consideration. Amongst others, this makes the implementation of adaptive
methods rather straightforward.

With respect to acoustic computations, in comparison to the FEM the dispersion
effect can be drastically reduced for the element free Galerkin method (EFGM) [4]
as well as for the radial point interpolation method (RPIM) [5]. Furthermore, the
shape functions of the meshfree methods can be easily adapted to the problem to
be solved. Consequently, Lacroix et al. [6] introduced an iterative EFGM which
is based on problem-dependent shape functions. In a first step, an approximation
for the sound pressure distribution inside the given domain is computed using a
standard EFGM. From this solution the phase distribution can be obtained and then
be used for the construction of new phase-dependent shape functions. These shape
functions are better suited to reproduce the wave-like character of the solution and
thus the results can be improved.

In this paper the method of Lacroix et al. has been further examined. In fact,
own investigations have shown, that the accuracy of the iterative EFGM is highly
dependent on the numerical integration scheme. Furthermore, different weight
functions have been introduced and compared in order to optimize the method.
Additionally, an iterative RPIM has been implemented; it will be compared to the
iterative EFGM.

2 Acoustics

The propagation of pressure waves in an acoustic fluid inside a domain Ω is
governed by the wave equation which can be derived using the balance of mass and
momentum as well as the ideal gas law, provided that the state variables pressure
P , density ρ, and velocity v experience only small variations. For time harmonic
waves of frequency ω the sound pressure p is the solution of the Helmholtz
equation

∇2p+ k2p = 0 (1)

with wavenumber k = ω/c and speed of sound c. The boundary Γ of the
fluid domain Ω is decomposed into three distinct regions ΓD, ΓN , and ΓR. The
associated boundary conditions are

• Dirichlet boundary conditions on ΓD:

p = p̄ (2)
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• Neumann boundary conditions on ΓN :

∂p

∂n
= −iωρv̄n (3)

• Robin boundary conditions on ΓR:

∂p

∂n
= −iωρAnp (4)

Here, An represents the admittance, n is the normal vector and vn the normal
velocity.

3 Meshfree methods

In comparison to mesh-based methods as, e.g., the FEM, meshfree methods do not
need a mesh for the representation of the domain Ω to be examined. In Ω and on
its boundary Γ, field points xi can be arbitrarily distributed. An approximation of
the sound pressure ph at an arbitrary point xQ in Ω is obtained by interpolation of
the form

ph(xQ) =

n∑
i=1

Φi(xQ)pi. (5)

Here, pi is the coefficient of the solution vector p belonging to field point xi and
Φi is the associated shape function which is constructed using all n field points
that influence xQ. In order to obtain an equation system that can be solved for
the coefficient vector p, the shape functions are substituted into the weak form of
the Helmholtz equation both as test and as trial functions. The resulting equations
have to be integrated numerically. For this reason a background mesh has to be
introduced, which can be chosen independently of the field point distribution and
which does not have to represent the domain Ω.

4 Shape functions

4.1 EFGM shape functions

In order to obtain the shape functions of the EFGM, the unknown sound pressure
ph is interpolated by

ph(x) =

n∑
i=1

Pi(x)ai(x) = PT (x)a(x). (6)

Here, PT (x) denotes a basis, which can be chosen as e.g.

PT (x) = [1 x y] (7)

in the two-dimensional case. The coefficient vector a(x) is determined by
minimization of a functional such that the approximation ph(xi) at the field points
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yields the best possible agreement with the according coefficients pi of the solution
vector. This leads to

a(x) = A−1(x)B(x)p (8)

with

A(x) =
n∑

i=1

wi(x)P(xi)P
T (xi) (9)

B(x) = [w1(x)P(xi), . . . , wn(x)P(xn)] . (10)

In eqns (9) and (10) the weight functions wi(x) can be chosen, e.g., as the cubic
spline

wi(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

3
− 4r2 + 4r3 for r ≤ 1

2
4

3
− 4r + 4r2 − 4

3
r3 for

1

2
< r ≤ 1

0 for r > 1

(11)

the quartic spline

wi(r) =

{
1− 6r2 + 8r3 − 3r4 for r ≤ 1

0 for r > 1
(12)

or the exponential function

wi(r) =

⎧⎪⎨
⎪⎩

exp(−(2r)2)− exp(−4)

1− exp(−4)
for r ≤ 1

0 for r > 1

(13)

with r denoting the distance between point x and field point xi scaled by the
influence radius rinfl, i.e.

r =
||x− xi||
rinfl

. (14)

Substituting eqn (8) into eqn (6) yields

ph(x) = PT (x)A−1(x)B(x)p = Φ(x) · p (15)

with the vector of shape functions

Φ(x) = PT (x)A−1(x)B(x). (16)
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4.2 RPIM shape functions

The shape functions for the RPIM can be obtained by an ansatz of the form

ph(x,xQ) =

n∑
i=1

Ri(x)ai(xQ) +

n∑
j=1

Pj(x)bj(xQ) (17)

= RT (x)a(xQ) +PT (x)b(xQ).

Here, Ri is a radial basis function which can be chosen as, e.g., the multiquadrics

Ri(r) = (r2 + (αcdc)
2)q (18)

where r denotes the distance between point x and field point xi. The characteristic
length dc is the average field point spacing in the influence domain and αc and dc
can be adapted to the problem. The additional polynomial basis PT (x) in eqn (17)
ensures the consistency of the method and can be chosen as for the EFGM in eqn
(7). The unknown coefficients ai and bj are chosen such that eqn (17) is fulfilled
at all n field points that influence point xQ.

It should be noted that the RPIM shape functions possess the Kronecker delta
property, which is not the case for the EFGM shape functions. The coefficient
vector p contains sound pressure values at the field points only if the method
fulfills the Kronecker delta property. More information about the construction of
meshfree shape functions and their properties can be found in [1].

5 Iterative meshfree method

Meshfree shape functions of the RPIM and the EFGM can be easily adapted to
the problem to be solved. This concept has, e.g., been used for the examination
of crack tip fields [7]. For acoustic problems that are described by the Helmholtz
equation, the sound pressure at a point x can be written as

p(x) = P̂ (x) (cos θ(x) + i sin θ(x)) (19)

with P̂ (x) being the amplitude and θ(x) being the phase of the wave. The
polynomial basis in eqn (7) or (17) is now substituted by the basis

PT (x) = [1 cos θ(x, y) sin θ(x, y)] . (20)

Provided that the phase is exactly known in the whole domain Ω, the shape
functions constructed with the basis (20) can interpolate the sound pressure
exactly. Since the phase is generally unknown, a first approximation of the sound
pressure ph1 (x) is computed using a standard EFGM or RPIM, respectively. From
this pressure field an approximation of the phase distribution can be obtained and
then be used for the construction of the adapted shape functions. Using the adapted
shape functions, a second approximation ph2 (x) is computed. This algorithm can
either be repeated for a predefined number of iterations or aborted if a convergence
criterion is reached.
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The method described above has been proposed and tested by Lacroix et
al. [6] for the EFGM. Own investigations have shown that the success of the
iterative method is highly dependent on the quality of the numerical integration.
Furthermore the methodology can be optimized if proper weight functions are
used. Moreover, the applicability of phase-dependent RPIM shape functions has
not yet been investigated.

6 Numerical investigations

In the following, the iterative methods as well as the FEM are applied to an
acoustic problem that can also be solved analytically. The square domain Ω shown
in figure 1 with edge length L = 1m is investigated. At x = y = 0 a Dirichlet
boundary condition with p0 = 1N/m2 is prescribed. On all four edges Robin
boundary conditions are chosen such that the analytical solution is a plane wave of
the form

p(x, y) = cos(k(x cos β + y sinβ)) + i sin(k(x cos β + y sinβ)). (21)

Here, β denotes the propagation angle and is defined as β = 20◦ in the following.
The fluid properties are chosen as density ρ = 1.247kg/m3 and speed of sound
c = 343m/s which correspond to air.

Figure 2 shows the L2 error of the iterative methods for a wavenumber k =
1 1

m and field point distance hfp = 0.1m. The background mesh is chosen in
accordance to the field point distribution, i.e. the size of the background cells
is hbg = 0.1m. The number of gauss points in each cell is nqp = 10 × 10.
Additionally, the error of the FEM is shown. For the FEM no iterative method
has been implemented and therefore the error of the FEM is constant here.

It is obvious that the EFGM yields the best result. The first iteration which is
carried out using the standard EFGM already leads to an error which is only 0.4%

Figure 1: Acoustic domain Ω with Robin and Dirichlet boundary conditions.
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Figure 2: L2 error of the RPIM, EFGM, and FEM for k = 1 1
m and hfp = 0.1m.

of the FEM error. The RPIM leads to at least 18% of the FEM error. During the
following iterations the error of the EFGM and the RPIM can be further reduced,
although the effect is much clearer for the EFGM.

In order to show the local effect of the iterative EFGM figure 3(a) contains the
error distribution on Ω for the first iteration which corresponds to the standard
EFGM. Furthermore in figure 3(b) the error distribution after the second iteration
is shown. The error could be significantly reduced. For comparison the error of
an optimal EFGM is presented in figure 3(c). Here, ”optimal EFGM” means, that
the shape functions are constructed using the phase distribution of the analytical
solution. As already mentioned before, the resulting shape functions are dispersion
free and are able to represent the solution exactly. The error of the optimal EFGM
almost vanishes but it is not zero everywhere. The reasons for this will be explained
later.

Several computations have shown, that the capabilities of the iterative EFGM
are highly dependent on the quality of the numerical integration. For the standard
EFGM the numerical integration does not have a significant influence on the
results, but the phase-dependent shape functions appear to be very sensitive to
the choice of the background mesh and the numerical integration order. Figure 4
shows the L2 error of the EFGM for different background meshes. The size of
the background cells hbg as well as the number of integration points in each cell
nqp have been varied. If a coarse background mesh with a low integration order
(in this case hbg = 0.1m and nqp = 4 × 4) is chosen, the iterative method even
deteriorates the results of the standard EFGM in the following iterations.

Similar investigations for the RPIM have shown that the background mesh and
integration order do not influence the quality of the method. On the other hand, the
results of the RPIM cannot keep up with the EFGM. For this reason the following
analysis is carried out for the EFGM only.
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(a) Standard EFGM (first iteration)

(b) Standard EFGM (second iteration)

(c) Optimal EFGM

Figure 3: Error distribution of the standard, iterative, and optimal EFGM for
k = 1 1

m , hfp = 0.1m, hbg = 0.1m, and nqp = 10 × 10 (left: real
part, right: imaginary part of the error).

Up to now, only 10 iterations have been considered. Figure 5 shows the results
of the iterative EFGM (EFGM iterative) for 10 as well as 100 iterations. For
comparison, the L2 error of the optimal EFGM (EFGM opt) is plotted. This means
that for the first iteration the optimal EFGM with shape functions depending on
the analytical phase distribution has been used and in the subsequent iterations the
shape functions have been computed using the phase of the solution obtained from
the last iteration.

The optimal EFGM reaches an L2 error of 4 · 10−7 in the first iteration. Due to
numerical instabilities this value oscillates slightly during the next iterations. The
iterative EFGM converges towards a limit of 7 · 10−7.

In order to assess the influence of the numerical integration on the results in a
more objective way, the optimal EFGM is further examined. In theory, the optimal
EFGM should yield an optimal solution because the shape functions interpolate the
sound pressure exactly. Nevertheless, the solution is not exact due to errors of the
numerical integration and other instabilities that result from e.g. matrix inversions.
Figure 6 shows the L2 error of the optimal EFGM for different sizes hbg of the

164  Boundary Elements and Other Mesh Reduction Methods XXXII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



Figure 4: L2 error for different background meshes for k = 1 1
m and hfp = 0.1m.

Figure 5: L2 error of the EFGM and the optimal EFGM for k = 1 1
m , hfp = hbg =

0.1m, and nqp = 10× 10.

background cells (left) and different numbers of gauss points nqp (right). The
influence of the integration scheme can be clearly seen: If the cells are chosen
too coarse or if the integration order is too low, the optimal EFGM can only yield
an L2 error of about 10−4 to 10−3. In contrast, the L2 error can be reduced to less
than 10−8 if the integration is improved. Furthermore, the method leads to better
results if the size of the background cells is a multiple of the field point spacing
and vice versa.

Finally, the influence of different weight functions wi(x) on the results of the
EFGM are examined. Up to now, all computations have been performed using the
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Figure 6: L2 error of the optimal EFGM (k = 1 1
m , hfp = 0.1m).

Figure 7: L2 error of the EFGM for different weight functions for k = 1 1
m ,

hfp = hbg = 0.1m, and nqp = 10× 10.

cubic spline. In [6] Lacroix et al. proposed exponential weight functions. Figure 7
shows the L2 error of the iterative EFGM if the cubic spline in eqn (11), the quartic
spline in eqn (12) and the exponential function in eqn (13) are used. Obviously the
weight function has a considerable influence on the error of not only the standard
EFGM (first iteration) but also of the iterative EFGM. In the considered case the
cubic spline weight functions yield the lowest error. In contrast, the iterative EFGM
with exponential weight function even increases the error of the standard EFGM.
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7 Conclusions

In this contribution, two meshfree methods, namely the EFGM and the RPIM,
have been applied to a two-dimensional acoustic problem. An iterative method
based on shape functions that are adapted to the problem has been implemented
and investigated especially with respect to the numerical integration scheme.
Furthermore, for the EFGM, the influence of different weight functions has been
examined.

The EFGM as well as the RPIM lead to a lower L2 error than the FEM for
similar discretizations. The iterative methods further reduce this error, but only
if the numerical integration scheme is chosen appropriately. The influence of the
background mesh and integration order on the iterative method is less considerable
for the RPIM. On the other hand, the EFGM leads to much lower errors than the
RPIM.

Furthermore, the influence of different weight functions on the quality of
the solution has been examined. For the considered example, the cubic spline
performed best whereas the exponential weight function did not yield reasonable
results.

In order to be able to use the iterative methods in practice, further investigations
are necessary, e.g., application to real life problems and the analysis of the
computation time.
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