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Abstract

This paper proposes a novel meshless boundary method called the singular bound-
ary method (SBM). This method is mathematically simple, easy-to-program, and
truly meshless. Like the method of fundamental solution (MFS), the SBM employs
the singular fundamental solution of the governing equation of interest as the
interpolation basis function. However, unlike the MFS, the source and colloca-
tion points of the SBM coincide on the physical boundary without the requirement
of fictitious boundary. In order to avoid the singularity at origin, this method pro-
poses an inverse interpolation technique to evaluate the singular diagonal elements
of the interpolation matrix. This study tests the SBM successfully to three bench-
mark problems, which shows that the method has rapid convergent rate and is
numerically stable.
Keywords: singular boundary method, singular fundamental solution, inverse
interpolation technique, singularity at origin.

1 Introduction

Meshless methods and their applications have attracted huge attention in recent
decades, since methods of this type avoid the perplexing mesh-generation in the
traditional mesh-based methods such as the finite element method and the finite
difference method. In comparison with the boundary element method, a variety of
boundary-type meshless methods have been developed. For instance, the method
of fundamental solutions (MFS) [1–4], boundary knot method [5], boundary col-
location method [6], boundary node method [7, 8], regularized meshless method
(RMM) [9, 10], and modified method of fundamental solution [11] etc.

Since the boundary node method still requires meshes in its numerical inte-
gration, it is not a truly meshless scheme like those moving least square based
meshless finite element method [12].
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The MFS is an attractive method with merits being integration-free, truly mesh-
less, super-convergent, and easy-to-use. On the downside, the MFS requires fic-
titious boundaries outside the physical domain to avoid the singularity at origin
because of its use of singular fundamental solution of the governing equation. In
practical applications, this artificial boundary is somewhat arbitrary and not easy
to determine optimally and makes the MFS unstable in the solution of complex-
shaped boundary problems.

As an alternative method, the BKM [5] has been introduced to use the non-
singular kernel functions such as general solutions or T-complete functions [13]
which also satisfy the governing equation. The collocation and source points are
coincident and are placed on the physical boundary of the problem in the BKM.
However, the nonsingular kernel functions are not available in some important
cases such as Laplace equation.

The RMM has recently been introduced by Young et al. [9]. This method has
advantages over the above-mentioned meshless boundary methods in that it applies
the desingularization of subtracting and adding-back technique to regularize the
singularity and hypersingularity of its interpolation basis function, namely, double-
layer potential. With the increasing of the boundary knot number, the condition
number of this method remains small and almost not changed. However, our
numerical experiments find that the solution accuracy and the convergence rate
of the RMM are not very accurate. In addition, the method requires the equally
spaced points to guarantee the solution accuracy and stability, which seriously
restricts its applicability to the real-world problems. Based on an idea similar to the
RMM, Božidar Šarler [11] proposes the modified method of fundamental solution
(MMFS), which has better accuracy than the RMM, but the MMFS method
requires numerical integration.

In this study, we propose a novel meshless boundary method called the singular
boundary method (SBM) [14]. This method is mathematically simple, accurate,
easy-to-program, and truly meshless. Similar to the MMFS, the SBM also directly
uses the singular fundamental solution of governing equation of interest as the
interpolation basis function. Dissimilar to the MMFS and all other boundary-type
meshless methods, the SBM uses an inverse interpolation technique to evaluate
the diagonal elements of the interpolation matrix to circumvent the singularity at
origin of fundamental solutions. In the rest part of this paper, numerical experi-
ments of this method are presented to demonstrate its convergence, accuracy and
stability.

2 Formulation of singular boundary method

Without loss of generality, we consider the Laplace equation boundary value prob-
lems as described below

∆u(x) = 0 in Ω (1)

u(x) = ū(x) on Γ1 (2)

m(x) = m̄(x) on Γ2 (3)
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where u(x) and m(x) = ∂u(x)
∂n are the potential and its normal derivative (flux),

respectively, n denotes the unit outward normal, Ω is the physical solution domain
in Rd, where d denotes the dimensionality of the space, and ∂Ω = Γ1 ∪ Γ2 rep-
resents its boundary. For the two dimensional Laplace equation, the fundamental
solution is given by

u∗L =
1
2π

ln ‖xi − xj‖. (4)

The approximate representation of the MFS solution for this problem is written
as [3, 15–17]

u(xi) =
N∑
j=1

νj ln ‖xi − xj‖ (5)

where N represents the total number of boundary collocation points, νj are the
unknown coefficients. Obviously, the superposition of the collocation points xi
and source points xj will lead to the well-known singularity at origin, namely,
ln ‖xi − xj‖ = ln 0 for i = j. In order to circumvent this troublesome problem,
the MFS places the source nodes on the fictitious boundary outside the physical
domain. However, despite of great effort of 40 years, the placement of fictitious
boundary in the MFS remains a perplexing problem for complex-shaped boundary
problems.

Like the MFS, the SBM also uses the fundamental solution as the kernel func-
tion of approximation. Unlike the MFS, the collocation and source points of the
SBM are coincident and are placed on the physical boundary without the need of
fictitious boundary. The interpolation formula of the SBM is given by

u(xi) =
N∑

j=1,j �=i
αj ln ‖xi − xj‖ + αiqii (6)

where αj are the unknown coefficients, qii are defined as the origin intensity fac-
tor. Eqn (6) of the SBM differs from eqn (5) of the MFS in that the fundamental
solution at origin is replaced by qii when the collocation point xi and source point
xj coincide (i = j).

The MMFS [4] also uses the fundamental solution as the interpolation basis
function while placing the source and collocation nodes at the same physical
domain. The essential difference between the SBM and MMFS is how to evaluate
the origin intensity factor qii . The latter uses the numerical integration approach,
while the SBM develops an inverse interpolation technique as detailed below to
calculate qii .

The matrix form of equation (6) can be written as

{qij}{αj} = {u(xi)} (7)

where qij = ln ‖xi−xj‖. We can see that qii are actually the diagonal elements of
matrixQ = {qij}. By collocatingN source points on physical boundary to satisfy
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the Dirichlet boundary condition eqn (2) and the Neumann boundary condition
eqn (3), we obtain the following discretization algebraic equations

N1∑
j=1

αj ln ‖xi − xj‖ = ū(xi), xi ∈ Γ1, (8)

N∑
j=N1+1

αj
∂ ln ‖xi − xj‖

∂n
= m̄(xi), xi ∈ Γ2, (9)

where N1 denotes the number of source points placed on the Dirichlet bound-
ary. Obviously, we can not simply use the fundamental solutions to compute qii.
Instead we propose an inverse interpolation technique (IIT) to evaluate the diago-
nal elements qii of interpolation matrix Q in the SBM.

For the boundary value problem eqns (1)–(3), we locate source points xj on the
physical boundary and place computational collocation points xk inside physical
domain. And then, we use a simple particular solution as the sample solution of
Laplace equation (1), for example, u = x + y. Using the interpolation formula
eqn (6), we can get

{bjk}{sj} = {xk + yk}, (10)

where bjk = ln ‖xk − xj‖. Thus, the influence coefficients sj can be evaluated.
Replacing the computational collocation points xk with the boundary source

points xj , we have

{qjk}{sj} = {xj + yj}, (11)

where the off-diagonal elements of interpolation matrix Q = {qjk} can be com-
puted by qjk = ln ‖xk − xj‖. It is noted that the influence coefficients of the eqn
(10) are the same as in eqn (11). Therefore, eqn (11) can be solved to calculate the
unknown diagonal elements qii of the matrix Q.

With the previously-calculated origin intensity factor, the SBM can be used to
compute arbitrary Laplace problems with the same geometry by using interpo-
lation formula eqn (6). Here we summarize the SBM solution procedure by the
following two steps:

Step 1. First, we place source points xj on the physical boundary and select
computational collocation points xk inside physical domain. And then we
choose a simple sample solution of the governing equation of interest and us
the SBM interpolation formula to get its physical solutions at these interior
nodes. Since the sample solution is known, we can calculate the influence
coefficients sj of the boundary source points xj . Finally, replacing the com-
putational collocation points xk by the boundary source points xj , we can
calculate the origin intensity factor qii.

Step 2. Using the origin intensity factor evaluated from Step 1 and the interpo-
lation formula (6), we can solve arbitrary problems with the same geometry
and governing equation.
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As discussed in the following section 3, the diagonal elements of Laplace equa-
tion with circular physical domain do not need to use the inverse interpolation tech-
nique to evaluate numerically. They are simply a summation of the corresponding
off-diagonal elements, that is,

Q(i, i) =
N∑

i�=j,j=1

q(i, j). (12)

However, this is an very exceptional case. To our numerical experiments, the
inverse interpolation technique has to be used to determine the diagonal elements
in all other geometric domains, irrespective of domain regularity and nodes place-
ment.

3 Numerical results and discussions

In this section, based on the above-mentioned numerical formulation, we examine
three benchmark examples. The relative average error(root mean square relative
error: RMSRE) is defined as follows [18]:

RMSRE =

√√√√ 1
K

K∑
j=1

Rerr2, (13)

where Rerr =
∣∣∣u(xj)−ũ(xj)

u(xj)

∣∣∣ for |u(xj)| ≥ 10−3 and Rerr = |u(xj) − ũ(xj)| ,
for |u(xj)| < 10−3, respectively, j is the index of inner point of interest, u(xj)
and u(xj) denote the analytical and numerical solutions at the j-th inner point,
respectively, and K represents the total number of test points of interest.

Unless otherwise stated, the diagonal elements of interpolation matrices in the
following three cases are all numerically evaluated by using the inverse interpola-
tion technique. For Laplace governing equation, we use u = x + y as the known
sample solution; for Helmholtz equation

∆u(x) + λ2u(x) = 0,

u = sin(x)cos(y) is chosen as the known sample solution, where λ represents the
wave number.

3.1 Case 1: Circular domain case

For convenience, the boundary points are distributed uniformly on a unit circle.
The exact solution of this case is u = x2 − y2. To examine the resulting solution
accuracy, the number of testing points scattered over the region of interest is chosen
to be 620.
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Here, the diagonal elements of the SBM interpolation matrix are evaluated by
two different approaches: (1) eqn (13), a summation of the corresponding off-
diagonal elements and (2) the inverse interpolation technique introduced in Sec-
tion 2.

The relative average error versus boundary point numbers for this problem is
illustrated in fig. 1. It is noted that the SBM error curves using the approach of
a summation of the corresponding off-diagonal elements (called the summation
approach in fig. 1) and the inverse interpolation technique for the diagonal ele-
ments are very close. To our experimental experiences, it is stressed that a summa-
tion of the corresponding off-diagonal elements to evaluate diagonal elements only
works for the circular domain Laplace problems. On the other hand, it is observed
that error curves of both the SBM and the RMM are decreasing with increas-
ing boundary points, while the SBM converges faster than the RMM. When the
boundary point number K = 100, the SBM solution accuracy is of order 10−5,
which is three orders of magnitude less than the RMM one 10−2.

Figures 2 and 3 show the condition numbers of the RMM and the SBM against
the boundary point numbers, respectively. We can see that the RMM condition
number is relatively smaller than the SBM ones, which may be an attractive advan-
tage in solving large-scale problems.

3.2 Case 2: Multiply connected domain case

Here we consider a multiply connected domain case. The geometric configuration
is depicted in fig. 4, and the exact solution is u = x2 − y2 + xy. The number of
testing points scattered across the connected domain is 651.

Figure 5 shows the convergence rate of relative average error versus boundary
point numbers, which indicates that the SBM has a faster convergence rate than the
RMM. We also observe that SBM convergence curves oscillates, while the RMM
has a stable convergence. The reason for the SBM oscillatory convergence curve
may be due to the severely ill-conditioned interpolation matrix. On the other hand,
the solution accuracy of the SBM solution appears higher than that of the RMM.
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Figure 1: Relative average error curves for Case 1.

110  Mesh Reduction Methods

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 



0 20 40 60 80 100
2

2.05

2.1

2.15

2.2

2.25

2.3

Numbers of boundary points

C
on

di
tio

n 
N

um
be

rs

Figure 2: Condition number curve for Case 1 by using RMM.
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Figure 3: Condition number curve for Case 1 by using SBM.
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Figure 4: Configuration of 2D multiply connected domain.

For example, the SBM relative average error is RMSRE = 3.734 × 10−4 with
boundary point number K = 200, in contrast to RMSRE = 1.069 × 10−1 for
the RMM.
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Figure 5: Relative average error curves for Case 3.
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Figure 6: Relative average error curves for Case 4.

3.3 Case 3: Helmholtz equation case

Besides the previous Laplace equation cases, we also examine Helmholtz problems
with wave number k =

√
2 and its exact solution is u = sin(x+ 0.5) cos(y). The

boundary points are distributed uniformly on a unit square domain. We choose
1369 test points scattered across the physical domain.

Figures 6 and 7 show the relative average errors and the condition numbers
versus boundary point numbers of the SBM and the RMM, respectively. Unlike
the previous two Laplacian cases, we can see that the RMM accuracy is better than
the SBM one when the boundary point number K ≤ 20. But with the increasing
number of boundary points, the relative average error of the SBM improves faster
and exhibits a rapid convergence rate, while the relative average error of the RMM
remains RMSRE = 1.0 × 10−1.

Figure 7 shows that the condition numbers of the RMM are relatively lower than
those of the SBM. For both methods, the condition numbers are no more than 102.
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Figure 7: Condition number curves for Case 4.

4 Conclusions

This paper introduces a novel meshless singular boundary method. Like the MFS,
the RMM and the MMFS, the SBM uses the fundamental solution as the interpo-
lation basis function. Unlike the MFS, the source and collocation points coincide
in the present method and the fictitious boundary in the MFS is no longer required.
Also, unlike the RMM and the MMFS, the SBM uses a new inverse interpola-
tion technique to remedy the singularity at origin of the fundamental solutions.
Numerical solutions of the SBM agree well with the analytical solutions. From the
foregoing figures of relative average error versus the increasing number of bound-
ary points, we can see that numerical results of both the SBM and the RMM exhibit
stable convergence trend in all tested cases, while the SBM converges faster than
the RMM. However, it is also observed that the RMM condition number is in gen-
eral much smaller than the SBM one in all tested cases.

Mathematical analysis of the SBM is now still under study and will be reported
in a subsequent paper.
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