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Abstract

Work towards acceleration and computer memory reduction of an algorithm for
the simulation of laminar viscous flows by solving of 3D velocity-vorticity formu-
lation of the Navier–Stokes equations is presented. The algorithm employs a com-
bination of a subdomain boundary element method (BEM) and fast single domain
BEM. The single domain BEM on a Poisson type equation is employed to calculate
boundary vorticity values. After discretization, the single domain BEM algorithm
yields a fully populated system of linear equations. The non-homogenous part of
the Poisson equation yields a fully populated matrix of domain integrals. In order
to lower the computational demand, a fast multipole expansion algorithm is used
on the domain matrix. The fundamental solution is expanded in terms of spheri-
cal harmonics. The computational domain and its boundary are recursively cut up
forming a tree of clusters of boundary elements and domain cells. Compression
is achieved in parts of the matrix, which correspond to boundary-domain cluster
pairs that are admissible for expansion. Significant reduction of the complexity is
achieved. The paper presents results of initial testing of the FMM algorithm.
Keywords: fast multipole method, boundary element method, Poisson equation.

1 Introduction

Our research group works on the application of the Boundary Element Method to
fluid flow problems. Recently Ravnik et al. [1] developed a 3D subdomain - sin-
gle domain BEM numerical scheme for solving incompressible velocity-vorticity
formulation of Navier–Stokes equations. A crucial part of this algorithm is the
calculation of boundary vorticity values. They are obtained by solving a Poisson
type partial differential equation using single domain BEM. The domain integral,
which arises from the non-homogenous part of the Poisson equation, requires the
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discretization of the domain and the calculation of a large number of domain
matrix elements, thus limiting the maximal mesh size. In this work, we are pre-
senting the application of the Fast Multipole Method (FMM) on the Poisson type
equation for a data sparse representation of the non-homogenous part.

The origins of FMM can be found in a fast algorithm for particle simulations
developed by Greengard and Rokhlin [2]. The algorithm decreases the complexity
of interacting particles from (n2) to linear complexity. The method was since then
used by many authors for a wide variety of problems using different expansion
strategies. Recently Bui et al. [3] combined FMM with the Fourier transform to
study multiple bubbles dynamics. Gumerov and Duraiswami [4] applied the FMM
for the biharmonic equation in three dimensions. The boundary integral Laplace
equation was accelerated with FMM by Popov and Power [5] and Popov et al. [6].

2 BEM for Poisson equation

The Poisson equation is a partial differential equation including a diffusion opera-
tor and a non-homogenous right-hand side,

∇2u(�r) = b(�r); �r ∈ �, (1)

where the unknown scalar field function u(�r) and the non-homogenous source
term b(�r) are defined in a domain �. The solution of such problems can be found
when suitable boundary conditions are applied, i.e. known scalar function or its
flux (q = �n · �∇u) on the boundary � = ∂�. An integral form of Poisson type
equation for a scalar field function u(�r) ∈ � is (Wrobel [7]):

c(�ξ)u(�ξ) +
∫

�

u(�r)�n · �∇u�d� =
∫

�

q(�r)u�d� −
∫

�

b(�r)u�d�; �ξ ∈ �, (2)

where �ξ is the collocation point on the boundary, �n is the unit normal and u� =
1/4π |�r−�ξ | is the fundamental solution of the Laplace equation in 3D. The domain
is approximated by domain cells � ≈ ∑nc

c=1 �c and its boundary by boundary
elements � ≈ ∑ne

e=1 �e. Within each domain cell and boundary element the field
functions are approximated using domain �, boundary ϕ and boundary flux φ

shape functions. In this paper domain cells are hexahedra and boundary elements
are parallelepipeds. In each domain cell 27 nodes are used to achieve quadratic
interpolation of function. Nine continuous nodes are used in boundary elements
for quadratic interpolation of function and four discontinuous nodes are used to
interpolate fluxes linearly. Considering these approximations in equation (2) we
have:

c(�ξ)u(�ξ) +
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9∑
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∫
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i

∫
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i u

�d� −
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27∑
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bc
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�c
i u

�d�. (3)
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The integrals are traditionally named as

h
e,�ξ
i =

∫
�e

ϕe
i �n · �∇u�d�, g

e,�ξ
i =

∫
�e

φe
i u

�d�, β
c,�ξ
i =

∫
�c

�c
i u

�d�. (4)

For a given collocation point �ξ we must calculate integrals for each internal cell
c, each boundary element e and all of the shape functions i. When the collocation
point �ξ is set into all boundary nodes, integrals may be arranged into matrices and
the system of linear equations may be written in matrix-vector form. Let [ ] denote
matrices and { } denote vectors. In matrix vector form equation (3) is:

[H ]{u} = [G]{q} − [B]{b}. (5)

Since all integral kernels are non zero, the matrices of equation (5) are fully pop-
ulated. Considering the boundary conditions, the system of equations (5) is rear-
ranged so that the unknown values of function and flux are gathered on the left
side. A direct solver with LU decomposition is used to solve the resulting system.
In order to evaluate the right-hand side of the system, we must calculate the domain
matrix times vector product [B]{b}. Since the domain matrix is fully populated, we
have lost the advantage of the boundary element method. The non-homogenous
part of the Poisson equation requires the discretization of the domain and the cal-
culation of a fully populated domain matrix.

The size of the boundary matrices [H ] and [G] scale as number of boundary
nodes squared. This are small compared to the domain matrix [B], which scales
as the number of boundary nodes times the number of domain nodes. Considering
a cube with N nodes per edge, we can estimate the number of domain nodes as
nd = N3, and the number of boundary nodes as nb ≈ N2, thus the complexity of
the domain integral matrix is O(N5). Since, clearly, the domain contribution takes
up most of the CPU time and storage space, this paper presents an application fast
multipole method to obtain a data sparse representation of the domain matrix in
such a way that the number of non-zero elements scales linearly with the number
of nodes O(nd).

3 Fast multipole method for the domain matrix

Let us consider the domain integral in equation (4). Since for each collocation point
�ξ integrals for all domain cells c must be evaluated, we are obviously faced by a
problem of quadratic complexity. This is analogous to the problem of interaction
of n particles (Barnes and Hut [8]), where the origins of the FMM can be found.

The method is based on the fact that it is possible to expand integral kernel, i.e.
the fundamental solution, into a series and by doing so, separate the variables –
the collocation point �ξ and the domain integration point �r . In this work we will
use spherical harmonics to expand the integral kernel into a series. Other expan-
sions are also possible, such as Taylor series, Lagrangian polynomials, etc. In polar
coordinate system �r = (r, ϕr , θr) and �ξ = (ξ, ϕξ , θξ ) the integral kernel may be
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expanded into such series

1

4π |�r − �ξ | =
∞∑
l=0

l∑
m=−l

(−1)m

2l + 1

1

ξ l+1
Y−m

l (θξ , ϕξ )︸ ︷︷ ︸
f (�ξ)

rlYm
l (θr, ϕr)︸ ︷︷ ︸

g(�r)
, (6)

where the dependence on the collocation point and domain point are separate. The
spherical harmonics may be calculated using a relationship to associated Legendre
polynomials Pm

l :

Ym
l (θ, ϕ) =

√
2l + 1

4π

(l − m)!
(l + m)!P

m
l (cos θ)eimϕ. (7)

The associated Legendre polynomials are evaluated using recurrence relations as
described in Press et al. [9]. The domain integral of equation (4) may now be
written as

β
c,�ξ
i =

∞∑
l=0

l∑
m=−l

Fm
l (�ξ)

∫
�c

G
m,i
l (�r)d�. (8)

We are now able to calculate each entry in the domain matrix with the above sum.
The advantage of this becomes obvious when we consider a cluster of nr nearby
collocation nodes and a cluster of nc nearby domain cells. These correspond to a
nr × nc matrix block. Since the variables are separated, it is possible to evaluate
two smaller matrix blocks (nr ×nexp) and (nexp ×nc), where nexp is the number of
expansion terms. Multiplication of the two smaller matrix block gives the full nr ×
nc matrix block up to an expansion error, which is defined by the number of terms
in the expansion. In order for this technique to yield a data sparse representation
of the full matrix block, the number of terms in the two smaller matrices should be
smaller than the number of terms in the full matrix block, i.e.

2(nrnexp + ncnexp) < nrnc; (9)

the factor 2 on the left-hand side is due to the fact that spherical harmonics are
complex and must be stored as such, while real values are stored in the full matrix.
As long as the collocation node cluster and the domain cells cluster are far apart
from each other, we can expect a low number of expansion terms to yield a suit-
able approximation. When the clusters are nearby, they should be smaller and a
larger number of expansion terms must be used. When the clusters coincide, i.e.
the collocation nodes are a part of the integration cells, the kernel is singular. Such
cluster pairs are called inadmissible and the corresponding matrix block is evalu-
ated in full, without compression.

The collocation points on the boundary must be divided into clusters and cou-
pled with clusters of domain cells. We constructed a tree of clusters of collocation
points and a tree of clusters of domain cells. The trees were constructed in a recur-
sive hierarchical manner. The problem domain is enclosed by a parallelepiped. All
collocation points and all of the domain cells are within this root parallelepiped.
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Figure 1: A problem domain shown with a cluster of collocation points �ξ and a
cluster of domain cells.

They make up root clusters of both trees. The parallelepiped is cut in half by a plane
splitting the root clusters into two. The cutting process is repeated recursively, so
the clusters on each level have less and less collocation points and domain cells.

With both cluster trees is place, the next step is to pair them, so a list of admissi-
ble and inadmissible matrix blocks can be formed. The admissible and inadmissi-
ble matrix blocks correspond to leaves on the tree of pairs of clusters. Each branch
of the collocation tree is paired with each branch of the domain cells tree on the
same level and with each branch of the domain cells tree on the next level forming
branches on the tree of pairs of clusters. For each pair a decision is taken weather
it is possible to do compression (i.e. the cluster pair is admissible) or lower level
pairs must be considered. If admissibility is not reached until the last level, such
pairs are inadmissible and will be calculated in full without compression.

The admissibility criterion is devised as follows. We are considering a cluster
of collocation points and a cluster of domain cells. Firstly we try to find a origin
of the coordinate system in nodes corresponding to domain cells in the cluster.
We choose such origin that the ratio r/ξ is minimal for all pairs of collocation
nodes and domain cells. If the minimal ratio is above one, series expansion is not
possible for this pair of clusters, thus this pair is not admissible. Secondly, when
the r/ξ ratio is below one, we calculate the number of expansion terms needed
to have the error of calculation of the integral kernel less than a user prescribed
criteria ε. If the number of expansion terms low enough, so that compression is
achieved (equation (9)), this cluster pair is admissible. At this point the tree of
pairs of clusters gets a leaf - no further branching is necessary.

Considering a cubic mesh of 163 cells with 333 nodes the matrix structure show-
ing admissible and inadmissible blocks is shown on Figure 2.

The described FMM based algorithm was implemented into the BEM Poisson
solver code. It is capable of constructing a data sparse approximation [B ′] of the
full domain matrix [B] and use it to evaluate the right-hand side of the system
of equations.
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Figure 2: Matrix structure of a cubic mesh (163 cells, 333 nodes). Filled areas show
inadmissible matrix blocks, white areas are admissible leafs obtained
using an admissibility criteria of ε = 10−5. The corresponding tree of
pairs of clusters had 19 levels.

4 Numerical tests

Let the problem domain be a unit cube. A structured mesh with equally spaced
hexahedral cells fills the cube. Let N be the number of nodes in each direction.
The number of nodes in the domain is N3 and the number of nodes on the bound-
ary scales as O(N2). The number of elements in the fully populated right-hand
side matrix [B] thus scales as O(N5). This fact is confirmed in Figure 3 where
the storage requirements of the full matrix [B] and the FMM compressed matrix
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Figure 3: The graphs show a comparison of the memory required to store a full
matrix [B] (thick solid line) and FMM compressed matrices [B ′] with
different number of expansion terms. We observe the linear dependence
of storage requirements for [B ′] on the number of nodes regardless of
the number of expansion terms.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

8  Boundary Elements and Other Mesh Reduction Methods XXX



[B ′] are compared for different meshes. Naturally the storage requirements for
[B ′] increase when the number of expansion terms is increased. However looking
at the storage requirement at a chosen number of expansion terms, we observe that
it increases linearly with the number of nodes, i.e. scales as O(N3). This relation-
ship holds regardless of the number of expansion terms. Thus by employing the
FMM we were able to decrease the storage requirements from O(nd · nb) to linear
dependence of O(nd).

The accuracy of carrying out the calculation using the FMM domain matrix was
analysed by solving the Poisson equations with known analytical solutions. The
numerical solution was obtained with the use of the full matrix and by using the
FMM data sparse domain matrix [B ′]. The problem geometry was a unit cube.
Table 1 summarizes the equations and boundary conditions.

The uniform norms of solutions obtained using the full domain matrix [B] are
presented in Table 2. The same problems were solved using FMM [B ′] matrices
with different number of expansion terms. Let us define the data ratio D as the
amount of data required to store the [B ′] matrix divided by the amount of data in
the [B] matrix. A larger number of expansion terms results in larger [B ′] matrix
and thus a larger data ratio. Figures 4, 5 and 6 present uniforms norms for problems
a), b) and c) respectively. We observe the norms increasing with decreasing data
ratio. Comparing the results of the three problems, we see that the accuracy is best
with problem a) and worst with problem c). This can be explained by the fact that
the domain vector is a steeper function in problem c) than in problem a). At the
same time we observe that the accuracy of solution converges with increasing data
ratio to the accuracy full domain matrix solution (Table 2).

Table 1: Poisson equations with analytical solutions. The geometry was a unit
cube. The boundary conditions in all cases were u(x = 0) = 0, u(x =
1) = 1, q(y = 0, y = 1, z = 0, z = 1) = 0.

Equation Analytical solution

a) ∇2u = 2 ua = x2, qa,x=0 = 0, qa,x=1 = 2

b) ∇2u = 6x ua = x3, qa,x=0 = 0, qa,x=1 = 3

c) ∇2u = 12x2 ua = x4, qa,x=0 = 0, qa,x=1 = 4

Table 2: Solutions of Poisson equations in Table 1. Uniform norms for the full
domain matrix [B] solution against the analytical solution are presented.

a) b) c)

mesh ‖u − ua‖∞ ‖q − qa‖∞ ‖u − ua‖∞ ‖q − qa‖∞ ‖u − ua‖∞ ‖q − qa‖∞
173 6.2 · 10−6 6.4 · 10−5 2.4 · 10−5 7.7 · 10−4 9.0 · 10−5 2.9 · 10−3

253 2.8 · 10−6 4.0 · 10−5 7.4 · 10−6 3.4 · 10−4 2.8 · 10−5 1.3 · 10−3

333 1.6 · 10−6 3.9 · 10−5 3.1 · 10−6 1.9 · 10−4 1.2 · 10−5 6.8 · 10−4
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Figure 4: The graphs present uniform norms versus the data ratio D of solutions
of problem a) in Table 1 using FMM matrices [B ′].
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Figure 5: The graphs present uniform norms versus the data ratio D of solutions
of problem b) in Table 1 using FMM matrices [B ′].
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Figure 6: The graphs present uniform norms versus the data ratio D of solutions
of problem c) in Table 1 using FMM matrices [B ′].
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5 Conclusions

We presented a Fast Multipole Method for data sparse representation and fast eval-
uation of the domain matrix of the BEM integral Poisson equation. The method
uses a spherical harmonic series expansion of the integral kernel. The complexity
of the calculation was decreased from O(nd · nb) to linear dependence of O(nd),
where nd is the number of nodes in the domain and nb is the number of nodes on
the boundary.

The method was tested on Poisson equations with known analytical solutions.
It was shown, that for a given solution accuracy, the method enables better data
ratios on denser meshes.

The main advantages of the method are the decreased storage requirements and
the acceleration of matrix vector multiplication. Since only a small portion of the
matrix must be evaluated, we observed a considerable acceleration of the time
needed to set up the matrix as well.

In the near future, the method will be used to accelerate the solution of the kine-
matics equation, which is also of the Poisson type. The solution of this equation
is an important part of the algorithm that solves fluid flow the velocity-vorticity
formulation of incompressible Navier–Stokes equations.
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[1] Ravnik, J., Škerget, L. & Žunič, Z., Combined single domain and subdo-
main BEM for 3D laminar viscous flow. Eng Anal Bound Elem, submitted,
pp. xx–xx, 2008.

[2] Greengard, L. & Rokhlin, V., A fast algorithm for particle simulations.
J Comput Phys, 73, pp. 325–348, 1987.

[3] Bui, T.T., Ong, E.T., Khoo, B.C., Klaseboer, E. & Hung, K.C., A fast algo-
rithm for modeling multiple bubbles dynamics. J Comput Phys, 216, pp.430–
453, 2006.

[4] Gumerov, N.A. & Duraiswami, R., Fast multipole method for the biharmonic
equation in three dimensions. J Comput Phys, 215, pp. 363–383, 2006.

[5] Popov, V. & Power, H., An O(N) Taylor series multipole boundary element
method for three-dimensional elasticity problems. Eng Anal Boud Elem, 25,
pp. 7–18, 2001.

[6] Popov, V., Power, H. & Walker, S.P., Numerical comparison between two
possible multipole alternatives for the BEM solution of 3D elasticity prob-
lems based upon Taylor series expansions. Eng Anal Boun Elem, 27, pp. 521–
531, 2003.

[7] Wrobel, L.C., The Boundary Element Method. John Willey & Sons Ltd,
2002.

[8] Barnes, J. & Hut, P., A hierarchical O(N log N) force calculation algorithm.
Nature, 324, pp. 446–449, 1986.

[9] Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P., Numerical
Recipes - The Art of Scientific computing, Second Edition. Cambridge Uni-
versity Press, 1997.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXX  11




